Color-Tunable Etalons Assembled from Poly (N-Isopropylacrylamide) Based Microgels

Photonic materials (PMs) that are capable of manipulating and controlling light in systems have immense potential for the computing and communications industries. These materials are formed by assembling components of differing refractive indices in a periodic array. Light then interacts with this assembly, which results in constructive and destructive interference, and hence color. While many three-dimensional PMs have been reported, and have the most potential for the applications mentioned above, one-dimensional PMs have a multitude of potential uses, e.g., light filtration. In this review, we focus on one-dimensional PMs; specifically poly (N-isopropylacrylamide) microgel based etalons. The etalons can be fabricated to exhibit a single bright color, and because the diameter of the microgels is dependent on temperature and pH, the mirror-mirror spacing can be dynamically tuned; therefore the etalon’s color is dynamically tunable.

[1]  Yan Lu,et al.  Charge-induced self-assembly of 2-dimensional thermosensitive microgel particle patterns. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[2]  T. Dupont,et al.  Capillary flow as the cause of ring stains from dried liquid drops , 1997, Nature.

[3]  Daniel M. Kuncicky,et al.  Surface-guided templating of particle assemblies inside drying sessile droplets. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[4]  L. Andrew Lyon,et al.  Dependence of Shell Thickness on Core Compression in Acrylic Acid Modified Poly(N-isopropylacrylamide) Core/Shell Microgels , 2003 .

[5]  R. Pelton,et al.  Poly(N-isopropylacrylamide) Latices Prepared with Sodium Dodecyl Sulfate , 1993 .

[6]  Xiaobo Hu,et al.  Control of poly(N-isopropylacrylamide) microgel network structure by precipitation polymerization near the lower critical solution temperature. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[7]  M. Carter,et al.  A "paint-on" protocol for the facile assembly of uniform microgel coatings for color tunable etalon fabrication. , 2011, ACS applied materials & interfaces.

[8]  H. Cong,et al.  Macroporous Au materials prepared from colloidal crystals as templates. , 2004, Journal of colloid and interface science.

[9]  H. Ringsdorf,et al.  Methanol-water as a co-nonsolvent system for poly(N-isopropylacrylamide) , 1990 .

[10]  W. Knoll,et al.  Optical Characterization of Co-Nonsolvency Effects in Thin Responsive PNIPAAm-Based Gel Layers Exposed to Ethanol/Water Mixtures , 2010 .

[11]  Kuniaki Nagayama,et al.  Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces , 1996 .

[12]  Justin D. Debord,et al.  Microgel Colloidal Crystals , 2004 .

[13]  Justin D. Debord,et al.  Thermoresponsive Photonic Crystals , 2000 .

[14]  M. Carter,et al.  Deswelling kinetics of color tunable poly(N-isopropylacrylamide) microgel-based etalons. , 2011, The journal of physical chemistry. B.

[15]  Akira Fujishima,et al.  Patterning of a colloidal crystal film on a modified hydrophilic and hydrophobic surface. , 2002, Angewandte Chemie.

[16]  Igor K Lednev,et al.  High ionic strength glucose-sensing photonic crystal. , 2003, Analytical chemistry.

[17]  S. Somogyi,et al.  Quantitative evolution studies of particle separation, size and shape for vapour-deposited ultrathin gold films on glass substrates , 1981 .

[18]  T. Hellweg,et al.  Effect of connectivity and charge density on the swelling and local structural and dynamic properties of colloidal PNIPAM microgels , 1998 .

[19]  I. B. Ivanov,et al.  Mechanism of formation of two-dimensional crystals from latex particles on substrates , 1992 .

[20]  Jianping Gao,et al.  A facile method to assemble PNIPAM-containing microgel photonic crystals. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  Geoffrey Brooker Modern Classical Optics , 2003 .

[22]  N. Turro,et al.  Consolvency of poly(N-isopropylacrylamide) in mixed water-methanol solutions: a look at spin-labeled polymers , 1992 .

[23]  Lei Jiang,et al.  Bioinspired colloidal photonic crystals with controllable wettability. , 2011, Accounts of chemical research.

[24]  Francesco Scotognella,et al.  Stacking the Nanochemistry Deck: Structural and Compositional Diversity in One‐Dimensional Photonic Crystals , 2009 .

[25]  Howard G. Schild,et al.  Cononsolvency in mixed aqueous solutions of poly(N-isopropylacrylamide) , 1991 .

[26]  M. Serpe,et al.  Reflection Order Selectivity of Color‐Tunable Poly(N‐isopropylacrylamide) Microgel Based Etalons , 2011, Advanced materials.

[27]  L. Lyon,et al.  Synthesis and protein adsorption resistance of PEG-modified poly(N-isopropylacrylamide) core/shell microgels , 2002 .

[28]  D Gan,et al.  Tunable swelling kinetics in core--shell hydrogel nanoparticles. , 2001, Journal of the American Chemical Society.

[29]  Martin J. Snowden,et al.  Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects , 1996 .

[30]  Robert Pelton,et al.  Engineering Glucose Swelling Responses in Poly(N-isopropylacrylamide)-Based Microgels , 2007 .

[31]  S. Asher,et al.  Polymerized crystalline colloidal array sensing of high glucose concentrations. , 2009, Analytical chemistry.

[32]  Justin D. Debord,et al.  Color-Tunable Colloidal Crystals from Soft Hydrogel Nanoparticles , 2002 .

[33]  L. Andrew Lyon,et al.  Synthesis and Characterization of Multiresponsive Core−Shell Microgels , 2000 .

[34]  T. Hellweg,et al.  Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels , 2000 .

[35]  I. Krieger,et al.  Diffraction of light by arrays of colloidal spheres , 1968 .

[36]  O. Velev,et al.  Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[37]  Hiroshi Fudouzi,et al.  Fabricating high-quality opal films with uniform structure over a large area. , 2004, Journal of colloid and interface science.

[38]  Xiaobo Hu,et al.  Multicompartment core/shell microgels. , 2010, Journal of the American Chemical Society.

[39]  H. Kawaguchi,et al.  Hybrid microgels with reversibly changeable multiple brilliant color. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[40]  Neetu Singh,et al.  Influence of ancillary binding and nonspecific adsorption on bioresponsive hydrogel microlenses. , 2007, Biomacromolecules.

[41]  L. Lyon,et al.  Self-healing colloidal crystals. , 2009, Angewandte Chemie.

[42]  H. Kawaguchi,et al.  Colored thin films prepared from hydrogel microspheres. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[43]  H. Stone,et al.  Surface Morphology of Drying Latex Films: Multiple Ring Formation , 2002 .

[44]  Jae Kyu Cho,et al.  Crystallization behavior of soft, attractive microgels. , 2007, The journal of physical chemistry. B.

[45]  Miao Yh,et al.  Order-disorder transition in a quasi-two-dimensional colloidal system. , 2006 .

[46]  Michael J. Serpe,et al.  Color Tunable Poly (N‐Isopropylacrylamide)‐co‐Acrylic Acid Microgel–Au Hybrid Assemblies , 2011 .