Characterisation of neuronal and glial populations of the visual system during zebrafish lifespan

[1]  Ralf Dahm,et al.  Investigating the genetics of visual processing, function and behaviour in zebrafish , 2011, neurogenetics.

[2]  E. Sher,et al.  The subtype-selective nicotinic acetylcholine receptor positive allosteric potentiator 2087101 differentially facilitates neurotransmission in the brain. , 2010, European journal of pharmacology.

[3]  H. Okamoto,et al.  Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum. , 2010, Developmental biology.

[4]  W. Sung,et al.  Deletion of the WD40 Domain of LRRK2 in Zebrafish Causes Parkinsonism-Like Loss of Neurons and Locomotive Defect , 2010, PLoS genetics.

[5]  John E Dowling,et al.  Zebrafish larvae lose vision at night , 2010, Proceedings of the National Academy of Sciences.

[6]  Lei Li,et al.  Fishing for age-related visual system mutants: behavioral screening of retinal degeneration genes in zebrafish. , 2010, Current aging science.

[7]  Su Guo,et al.  The distribution of GAD67‐mRNA in the adult zebrafish (teleost) forebrain reveals a prosomeric pattern and suggests previously unidentified homologies to tetrapods , 2009, The Journal of comparative neurology.

[8]  R. Richards,et al.  Selective neuronal requirement for huntingtin in the developing zebrafish , 2009, Human molecular genetics.

[9]  Wolfgang Driever,et al.  Genetic dissection of dopaminergic and noradrenergic contributions to catecholaminergic tracts in early larval zebrafish , 2009, The Journal of comparative neurology.

[10]  S. Hellberg,et al.  A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. , 2009, The Journal of clinical investigation.

[11]  G. Zupanc Adult neurogenesis and neuronal regeneration in the brain of teleost fish , 2008, Journal of Physiology-Paris.

[12]  R. Anadón,et al.  Morphogenesis in the retina of a slow-developing teleost: Emergence of the GABAergic system in relation to cell proliferation and differentiation , 2008, Brain Research.

[13]  John E. Dowling,et al.  Zebrafish: A model system for the study of eye genetics , 2008, Progress in Retinal and Eye Research.

[14]  D. Clemente,et al.  Characterization of NADPH-diaphorase-positive glial cells of the tench optic nerve after axotomy. , 2008, Archives italiennes de biologie.

[15]  S. Ryu,et al.  Expression and function of nr4a2, lmx1b, and pitx3 in zebrafish dopaminergic and noradrenergic neuronal development , 2007, BMC Developmental Biology.

[16]  Yvonne M. Bradford,et al.  The Zebrafish Information Network: the zebrafish model organism database provides expanded support for genotypes and phenotypes , 2007, Nucleic Acids Res..

[17]  P. Currie,et al.  Animal models of human disease: zebrafish swim into view , 2007, Nature Reviews Genetics.

[18]  Alexander F. Schier,et al.  Hypocretin/Orexin Overexpression Induces An Insomnia-Like Phenotype in Zebrafish , 2006, The Journal of Neuroscience.

[19]  E. Mignot,et al.  Regulation of Hypocretin (Orexin) Expression in Embryonic Zebrafish* , 2006, Journal of Biological Chemistry.

[20]  R. Bernardos,et al.  GFAP transgenic zebrafish. , 2006, Gene expression patterns : GEP.

[21]  Nancy Hopkins,et al.  Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. , 2006, Trends in genetics : TIG.

[22]  D. Clemente,et al.  Tyrosine hydroxylase immunoreactivity in the developing visual pathway of the zebrafish , 2006, Anatomy and Embryology.

[23]  R. Anadón,et al.  Calretinin immunoreactivity in the brain of the zebrafish, Danio rerio: Distribution and comparison with some neuropeptides and neurotransmitter‐synthesizing enzymes. II. Midbrain, hindbrain, and rostral spinal cord , 2006, The Journal of comparative neurology.

[24]  R. Anadón,et al.  Calretinin immunoreactivity in the brain of the zebrafish, Danio rerio: Distribution and comparison with some neuropeptides and neurotransmitter‐synthesizing enzymes. I. Olfactory organ and forebrain , 2006, The Journal of comparative neurology.

[25]  R. Anadón,et al.  Calbindin and calretinin immunoreactivity in the retina of adult and larval sea lamprey , 2006, Brain Research.

[26]  D. Clemente,et al.  Development of the cholinergic system in the brain and retina of the zebrafish , 2005, Brain Research Bulletin.

[27]  C. Chien,et al.  Hedgehog regulated Slit expression determines commissure and glial cell position in the zebrafish forebrain , 2005, Development.

[28]  J. Fetcho,et al.  Ontogeny and innervation patterns of dopaminergic, noradrenergic, and serotonergic neurons in larval zebrafish , 2004, The Journal of comparative neurology.

[29]  E. Vecino,et al.  Differential expression of calretinin in the developing and regenerating zebrafish visual system. , 2004, Histology and histopathology.

[30]  D. Clemente,et al.  Cholinergic elements in the zebrafish central nervous system: Histochemical and immunohistochemical analysis , 2004, The Journal of comparative neurology.

[31]  I. Zhdanova,et al.  The early ontogeny of neuronal nitric oxide synthase systems in the zebrafish , 2004, Journal of Experimental Biology.

[32]  Stephen W. Wilson,et al.  Early steps in the development of the forebrain. , 2004, Developmental cell.

[33]  W. Harris,et al.  The zebrafish as a tool for understanding the biology of visual disorders. , 2003, Seminars in cell & developmental biology.

[34]  R. Anadón,et al.  Distribution of thyrotropin‐releasing hormone (TRH) immunoreactivity in the brain of the zebrafish (Danio rerio) , 2002, The Journal of comparative neurology.

[35]  Jan Kaslin,et al.  Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio) , 2001, The Journal of comparative neurology.

[36]  J. Malicki,et al.  Morphology and cell type heterogeneities of the inner ear epithelia in adult and juvenile zebrafish (Danio rerio) , 2001, The Journal of comparative neurology.

[37]  Wolfgang Driever,et al.  Dopamine transporter expression distinguishes dopaminergic neurons from other catecholaminergic neurons in the developing zebrafish embryo , 2001, Mechanisms of Development.

[38]  L. Eng,et al.  Glial Fibrillary Acidic Protein: GFAP-Thirty-One Years (1969–2000) , 2000, Neurochemical Research.

[39]  C. Redies,et al.  R‐ and B‐cadherin expression defines subpopulations of glial cells involved in axonal guidance in the optic nerve head of the chicken , 2000, Glia.

[40]  J. G. Briñón,et al.  Distribution of the calcium-binding proteins parvalbumin, calbindin D-28k and calretinin in the retina of two teleosts , 2000, Journal of Chemical Neuroanatomy.

[41]  H. Nakayasu,et al.  A monoclonal antibody stains radial glia in the adult zebrafish (Danio rerio) CNS , 2000, Journal of neurocytology.

[42]  P. Raymond,et al.  R‐cadherin expression in the developing and adult zebrafish visual system , 1999, The Journal of comparative neurology.

[43]  M. Doldán,et al.  Immunochemical localization of calretinin in the retina of the turbot (Psetta maxima) during development , 1999, The Journal of comparative neurology.

[44]  C. Lillo,et al.  Response of microglial cells after a cryolesion in the peripheral proliferative retina of tench , 1999, Brain Research.

[45]  M. Kálmán Astroglial architecture of the carp (Cyprinus carpio) brain as revealed by immunohistochemical staining against glial fibrillary acidic protein (GFAP) , 1998, Anatomy and Embryology.

[46]  J. G. Briñón,et al.  Transient expression of calretinin in the trout habenulo-interpeduncular system during development , 1998, Neuroscience Letters.

[47]  R. Nieuwenhuys,et al.  The Central Nervous System of Vertebrates , 1997, Springer Berlin Heidelberg.

[48]  R. Fernald,et al.  Cell movement and cell cycle dynamics in the retina of the adult teleost Haplochromis burtoni , 1997, The Journal of comparative neurology.

[49]  J. G. Briñón,et al.  Calretinin immunoreactivity in the developing olfactory system of the rainbow trout. , 1997, Brain research. Developmental brain research.

[50]  S. Easter,et al.  The development of vision in the zebrafish (Danio rerio). , 1996, Developmental biology.

[51]  H. Baier,et al.  Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Danio rerio. , 1996, Development.

[52]  H. Baier,et al.  Zebrafish mutations affecting retinotectal axon pathfinding. , 1996, Development.

[53]  K. Negishi,et al.  Differentiation of photoreceptors, glia, and neurons in the retina of the cichlid fish Aequidens pulcher; an immunocytochemical study. , 1995, Brain research. Developmental brain research.

[54]  S. Easter,et al.  Expression of glial fibrillary acidic protein and its relation to tract formation in embryonic zebrafish (Danio rerio) , 1995, The Journal of comparative neurology.

[55]  J. G. Briñón,et al.  Calretinin-like immunoreactivity in the optic tectum of the tench (Tinca tinca L.) , 1995, Brain Research.

[56]  M. Celio,et al.  Localization of calretinin in cells of layer I (Cajal-Retzius cells) of the developing cortex of the rat. , 1994, Brain research. Developmental brain research.

[57]  S. Easter,et al.  Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio) , 1994, The Journal of comparative neurology.

[58]  J. Dowling,et al.  Early‐eye morphogenesis in the zebrafish, Brachydanio rerio , 1994, The Journal of comparative neurology.

[59]  D. Jacobowitz,et al.  Calretinin, a neuronal calcium binding protein, inhibits phosphorylation of a 39 kDa synaptic membrane protein from rat brain cerebral cortex , 1991, Neuroscience Letters.

[60]  J. Miguel-Hidalgo,et al.  Distribution of calbindinlike immunoreactive structures in the optic tectum of normal and eye-enucleated cyprinid fish , 1991, Cell and Tissue Research.

[61]  D. Richards,et al.  Calretinin and calbindin in the retina of the developing chick , 1991, Cell and Tissue Research.

[62]  J. T. Corwin,et al.  Selective labeling of sensory hair cells and neurons in auditory, vestibular, and lateral line systems by a monoclonal antibody , 1990, The Journal of comparative neurology.

[63]  C. Kimmel,et al.  Organization of hindbrain segments in the zebrafish embryo , 1990, Neuron.

[64]  J. Scholes,et al.  Reticular astrocytes in the fish optic nerve: macroglia with epithelial characteristics form an axially repeated lacework pattern, to which nodes of Ranvier are apposed , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  C A Stuermer,et al.  Retinotopic organization of the developing retinotectal projection in the zebrafish embryo , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  M. Westerfield,et al.  Segmental pattern of development of the hindbrain and spinal cord of the zebrafish embryo. , 1988, Development.

[67]  J. Miller,et al.  Biochemical and immunohistochemical correlates of kindling-induced epilepsy: role of calcium binding protein , 1983, Brain Research.

[68]  D. Dahl,et al.  Immunolabeling of carbonic anhydrase isoenzyme C and glial fibrillary acidic protein in paraffin-embedded tissue sections of human brain and retina. , 1983, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[69]  M. Norenberg,et al.  Fine structural localization of glutamine synthetase in astrocytes of rat brain , 1979, Brain Research.

[70]  N. Schellart,et al.  A golgi study of goldfish optic tectum , 1978, The Journal of comparative neurology.

[71]  E. Schmatolla,et al.  Influence of retino-tectal innervation on cell proliferation and cell migration in the embryonic teleost tectum. , 1973, Journal of embryology and experimental morphology.

[72]  M. Lardelli,et al.  Altering presenilin gene activity in zebrafish embryos causes changes in expression of genes with potential involvement in Alzheimer's disease pathogenesis. , 2009, Journal of Alzheimer's disease : JAD.

[73]  Jonathan J. Sager,et al.  Transgenic zebrafish models of neurodegenerative diseases , 2009, Brain Structure and Function.

[74]  D. Northmore The Optic Tectum , 2009 .

[75]  N. Roy,et al.  Neurotoxicity assessment using zebrafish. , 2007, Journal of pharmacological and toxicological methods.

[76]  S. Yazulla,et al.  Neurochemical anatomy of the zebrafish retina as determined by immunocytochemistry. , 2001, Journal of neurocytology.

[77]  R. Nieuwenhuys,et al.  Holosteans and Teleosts , 1998 .

[78]  M. Westerfield The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio) , 1995 .

[79]  B. I. Roots,et al.  Comparative immunohistochemical study of glial filament proteins (glial fibrillary acidic protein and vimentin) in goldfish, octopus, and snail , 1990, Glia.

[80]  J. Cronly-Dillon,et al.  Glial fibrillary acidic protein (GFAP) from goldfish: Its localisation in visual pathway , 1989, Glia.

[81]  H. Vanegas,et al.  Morphological Aspects of the Teleostean Optic Tectum , 1984 .

[82]  H. Vanegas,et al.  Comparative neurology of the optic tectum , 1984 .

[83]  J. Ribet,et al.  Post-hatching growth and allometry of the teleost brain. , 1979, Journal fur Hirnforschung.

[84]  S. Sharma Development of the Optic Tectum in Brown Trout , 1975 .

[85]  M. A. Ali Vision in Fishes , 1975, NATO Advanced Study Institutes Series.

[86]  Kara L. Cerveny,et al.  Development and Stem Cells Research Article , 2022 .