Molecular epidemiology of tuberculosis: toy or tool? A review of the literature and examples from Central Europe

ZusammenfassungGenotypisierung (Synonym: DNA-Fingerprinting) von Erregern ist zu einem für die Mikrobiologie und Epidemiologie unverzichtbaren Instrument geworden. Eines der ersten Ziele war Mycobacterium tuberculosis. In den letzten 15 Jahren haben rund 900 einschlägige Publikationen den Stellenwert der Genotypisierung bei Tuberkulose gefestigt. Sie brachten neue Einblicke in den natürlichen Verlauf der Tuberkuloseinfektion, insbesondere zur Häufigkeit von Reaktivierung, Reinfektion und Mehrfachinfektion, und führten zur Weiterentwicklung pathophysiologischer Konzepte. Weiterhin stellen die Einschätzung frischer Infektionsübertragungen in einer Population und die Analyse von Ausbrüchen und Laborkontaminationen den Haupteinsatzbereich des DNA-Fingerprintings dar. So kann das Aufdecken eines Ausbruchs (Clusters) Hinweise auf weitere, unerkannte Fälle liefern. Die Identifikation von Laborkontaminationen (falsch positive Kulturen) verhindert unnötige Therapierisiken und -kosten und kann Schwachstellen im Labor aufzeigen. Einige europäische Staaten nutzen DNA-Fingerprinting prospektiv auf nationaler Ebene. So kann der Anteil der Tuberkulosefälle, für die Public Health Fachkräfte einen epidemiologischen Zusammenhang dokumentieren können, nach Einbezug der Fingerprinting-ergebnisse deutlich gesteigert werden. Weltweit gesehen sind Stammfamilien identifiziert, charakterisiert und ihre Ausbreitung kartiert worden. Der Import von multiresistenten M. tuberculosis des Beijing-Genotyps nach Mitteleuropa wird hier beispielhaft diskutiert. Ziel der weiteren Entwicklung ist letztlich eine rasche molekularepidemiologische Analyse gleichzeitig und in einem Schritt mit der Bestimmung von Spezies, Resistenz und Pathogenitätsfaktoren.SummaryGenotyping has become an indispensable tool in medical microbiology and epidemiology. One of the first targets has been Mycobacterium tuberculosis. Over the past 15 years approximately 900 pertinent publications have substantiated the value of the genotyping approach for tuberculosis control. New insights into the understanding of the natural history of tuberculosis, especially regarding the frequencies of reactivation, reinfection or multiple infection entailed adaptations of pathophysiological concepts. However, assessment of recent transmission, outbreak analysis, and detection of laboratory contamination still form the genuine scope of genotyping. Detection of unsuspected clusters of cases can provide clues to search for further, undetected cases. Uncovering false positive cultures spares the risks and costs of unnecessary treatment and may reveal systematic laboratory weaknesses. Several European countries already profit from nationwide prospective fingerprinting. After providing genotyping results to public health officials, these were able to document epidemiological links for substantially more tuberculosis patients. On a global scale, strain families and particular strains have been identified, characterised and traced in their spread. The importation of Beijing-genotype multidrug-resistant M. tuberculosis into Central European countries will be described here as an example. The goal for further developments is the ability to compare isolates for epidemiological purposes in a single step that also comprises species determination, drug resistance testing and detection of pathogenicity factors.

[1]  S. Gillespie,et al.  Nonrandom Association of IS6110 andMycobacterium tuberculosis: Implications for Molecular Epidemiological Studies , 1998, Journal of Clinical Microbiology.

[2]  R. Skuce,et al.  Evaluation of variable number tandem repeat (VNTR) loci in molecular typing of Mycobacterium bovis isolates from Ireland. , 2004, Veterinary microbiology.

[3]  D. Caugant,et al.  Pulmonary tuberculosis in Norwegian patients. The role of reactivation, re-infection and primary infection assessed by previous mass screening data and restriction fragment length polymorphism analysis. , 2000, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[4]  W. Prodinger,et al.  Molecular epidemiology of tuberculosis in the Czech Republic, 2004: analysis of M. tuberculosis complex isolates originating from the city of prague, south Moravia and the Moravian-Silesian region. , 2006, Central European journal of public health.

[5]  J. T. Crawford,et al.  The molecular epidemiology of tuberculosis in New York City: the importance of nosocomial transmission and laboratory error. , 1996, Tubercle and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[6]  D. van Soolingen,et al.  Mutations in Putative Mutator Genes of Mycobacterium tuberculosis Strains of the W-Beijing Family , 2003, Emerging infectious diseases.

[7]  Philip Supply,et al.  Variable human minisatellite‐like regions in the Mycobacterium tuberculosis genome , 2000, Molecular microbiology.

[8]  F. Allerberger,et al.  Simultaneous Infection with Two Drug-SusceptibleMycobacterium tuberculosis Strains in an Immunocompetent Host , 1999, Journal of Clinical Microbiology.

[9]  R. Frothingham,et al.  Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. , 1998, Microbiology.

[10]  Engel Hw Mycobacteriophages and phage typing. , 1978 .

[11]  L. Domínguez,et al.  Elevation of Mycobacterium tuberculosis subsp. caprae Aranaz et al. 1999 to species rank as Mycobacterium caprae comb. nov., sp. nov. , 2003, International journal of systematic and evolutionary microbiology.

[12]  J. Bauer,et al.  False-positive results from cultures of Mycobacterium tuberculosis due to laboratory cross-contamination confirmed by restriction fragment length polymorphism , 1997, Journal of clinical microbiology.

[13]  Philip Supply,et al.  Discriminatory Power and Reproducibility of Novel DNA Typing Methods for Mycobacterium tuberculosis Complex Strains , 2005, Journal of Clinical Microbiology.

[14]  J T Douglas,et al.  Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia , 1995, Journal of clinical microbiology.

[15]  J. T. Crawford,et al.  IS6110, an IS-like element of Mycobacterium tuberculosis complex , 1990, Nucleic Acids Res..

[16]  P. Groenen,et al.  Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method , 1993, Molecular microbiology.

[17]  E. Vynnycky,et al.  Exogenous re-infection as a cause of recurrent tuberculosis in a low-incidence area. , 2003, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[18]  J. T. Crawford,et al.  Evaluation of a Two-Step Approach for Large-Scale, Prospective Genotyping of Mycobacterium tuberculosis Isolates in the United States , 2005, Journal of Clinical Microbiology.

[19]  R. Reves,et al.  Review of false-positive cultures for Mycobacterium tuberculosis and recommendations for avoiding unnecessary treatment. , 2000, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[20]  B. Kreiswirth,et al.  Molecular epidemiology of tuberculosis in Prague and South Moravia, Czech Republic: genetic analysis of Mycobacterium tuberculosis isolates by IS6110-RFLP fingerprinting and spoligotyping. , 2004, Central European journal of public health.

[21]  A. Makristathis,et al.  Drug resistance rates of Mycobacterium tuberculosis strains in Austria between 1995 and 1998 and molecular typing of multidrug-resistant isolates , 2000, Epidemiology and Infection.

[22]  D. Enarson,et al.  Epidemiology of respiratory infectious diseases. , 1999, Current opinion in pulmonary medicine.

[23]  F. Drobniewski,et al.  Progression Toward an Improved DNA Amplification-Based Typing Technique in the Study of Mycobacterium tuberculosis Epidemiology , 2006, Journal of Clinical Microbiology.

[24]  Z. F. Zainuddin,et al.  Characterization of a Mycobacterium tuberculosis insertion sequence belonging to the IS3 family , 1990, Molecular microbiology.

[25]  Wolfgang M Prodinger,et al.  Characterization of Mycobacterium caprae Isolates from Europe by Mycobacterial Interspersed Repetitive Unit Genotyping , 2005, Journal of Clinical Microbiology.

[26]  D. van Soolingen,et al.  A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes , 2003, Clinical and experimental immunology.

[27]  A. Fox Mass Spectrometry for Species or Strain Identification after Culture or without Culture: Past, Present, and Future , 2006, Journal of Clinical Microbiology.

[28]  Philip Supply,et al.  Automated High-Throughput Genotyping for Study of Global Epidemiology of Mycobacterium tuberculosis Based on Mycobacterial Interspersed Repetitive Units , 2001, Journal of Clinical Microbiology.

[29]  Asger Dirksen,et al.  Stability of DNA patterns and evidence of Mycobacterium tuberculosis reactivation occurring decades after the initial infection. , 2003, The Journal of infectious diseases.

[30]  E. Willery,et al.  Mixed infection and clonal representativeness of a single sputum sample in tuberculosis patients from a penitentiary hospital in Georgia , 2006, Respiratory research.

[31]  C. Locht,et al.  High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  The Swiss Hiv Cohort Study,et al.  Molecular Epidemiology of Tuberculosis among HIV-Infected Persons in Switzerland: A Countrywide 9-Year Cohort Study , 1999, Infection.

[33]  D. van Soolingen,et al.  Nosocomial transmission of tuberculosis to a nurse demonstrated by means of spoligotyping of a formalin-fixed bronchial biopsy. , 2001, The Netherlands journal of medicine.

[34]  D. van Soolingen,et al.  A Multidrug-Resistant Tuberculosis Microepidemic Caused by Genetically Closely Related Mycobacterium tuberculosis Strains , 1999, Journal of Clinical Microbiology.

[35]  D. van Soolingen,et al.  Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements , 2001, Journal of internal medicine.

[36]  A. Telenti,et al.  Molecular approach to identifying route of transmission of tuberculosis in the community , 1993, The Lancet.

[37]  S. Niemann,et al.  IS6110 fingerprinting of drug-resistant Mycobacterium tuberculosis strains isolated in Germany during 1995 , 1997, Journal of clinical microbiology.

[38]  Donald A Enarson,et al.  Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. , 2005, American journal of respiratory and critical care medicine.

[39]  D. van Soolingen,et al.  Molecular epidemiology of tuberculosis in the Netherlands: a nationwide study from 1993 through 1997. , 1999, The Journal of infectious diseases.

[40]  Patricia Kissinger,et al.  Evaluation of the Epidemiologic Utility of Secondary Typing Methods for Differentiation of Mycobacterium tuberculosis Isolates , 2003, Journal of Clinical Microbiology.

[41]  W. Haas,et al.  Fast Ligation-Mediated PCR, a Fast and Reliable Method for IS6110-Based Typing of Mycobacterium tuberculosis Complex , 2005, Journal of Clinical Microbiology.

[42]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[43]  L. Riley,et al.  Exogenous reinfection in tuberculosis. , 2005, The Lancet. Infectious diseases.

[44]  D. van Soolingen,et al.  Tuberculosis contact investigation and DNA fingerprint surveillance in The Netherlands: 6 years' experience with nation-wide cluster feedback and cluster monitoring. , 2003, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[45]  Leen Rigouts,et al.  Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology , 2006, BMC Microbiology.

[46]  K. Sachse,et al.  Molecular Fingerprinting of Mycobacterium bovis subsp. caprae Isolates from Central Europe , 2004, Journal of Clinical Microbiology.

[47]  R. Pandey,et al.  Predominace of a novel Mycobacterium tuberculosis genotype in the Delhi region of India. , 2002, Tuberculosis.

[48]  S. Niemann,et al.  The Beijing genotype is emerging among multidrug-resistant Mycobacterium tuberculosis strains from Germany. , 2004, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[49]  M. Poljak,et al.  Molecular Epidemiology of Tuberculosis in Slovenia: Results of a One-Year (2001) Nation-wide Study , 2003, Scandinavian journal of infectious diseases.

[50]  E. Vynnycky,et al.  Annual Mycobacterium tuberculosis infection risk and interpretation of clustering statistics. , 2003, Emerging infectious diseases.

[51]  S. Niemann,et al.  Mycobacterium bovis subsp. caprae Caused One-Third of Human M. bovis-Associated Tuberculosis Cases Reported in Germany between 1999 and 2001 , 2003, Journal of Clinical Microbiology.

[52]  J. T. Crawford,et al.  Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology , 1993, Journal of clinical microbiology.

[53]  J. Bauer,et al.  Results from 5 Years of Nationwide DNA Fingerprinting of Mycobacterium tuberculosis Complex Isolates in a Country with a Low Incidence of M. tuberculosis Infection , 1998, Journal of Clinical Microbiology.

[54]  Midori Kato-Maeda,et al.  Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[55]  R. Frothingham,et al.  Comparison of Methods Based on Different Molecular Epidemiological Markers for Typing of Mycobacterium tuberculosis Complex Strains: Interlaboratory Study of Discriminatory Power and Reproducibility , 1999, Journal of Clinical Microbiology.

[56]  D van Soolingen,et al.  Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology , 1997, Journal of clinical microbiology.

[57]  D van Soolingen,et al.  Analysis of rate of change of IS6110 RFLP patterns of Mycobacterium tuberculosis based on serial patient isolates. , 1999, The Journal of infectious diseases.

[58]  F. Allerberger,et al.  A community outbreak of tuberculosis in Southern Austria: lessons learned for a targeted use of molecular epidemiological methods and tuberculin skin testing , 2005, Epidemiology and Infection.

[59]  M. Borgdorff,et al.  Beijing/W Genotype Mycobacterium tuberculosis and Drug Resistance , 2006, Emerging infectious diseases.

[60]  O. Brändli,et al.  Transmission of tuberculosis in the metropolitan area of Zurich: a 3 year survey based on DNA fingerprinting. , 1998, The European respiratory journal.

[61]  H. Engel Mycobacteriophages and phage typing. , 1978, Annales de microbiologie.

[62]  B. Ross,et al.  Molecular cloning of a highly repeated DNA element from Mycobacterium tuberculosis and its use as an epidemiological tool , 1992, Journal of clinical microbiology.

[63]  E. Nardell,et al.  Estimated Costs of False Laboratory Diagnoses of Tuberculosis in Three Patients , 2002, Emerging infectious diseases.

[64]  S. Niemann,et al.  Epidemiology of Tuberculosis in Hamburg, Germany: Long-Term Population-Based Analysis Applying Classical and Molecular Epidemiological Techniques , 2002, Journal of Clinical Microbiology.

[65]  S. Niemann,et al.  Molecular Epidemiology of Tuberculosis among Immigrants in Hamburg, Germany , 2004, Journal of Clinical Microbiology.

[66]  W. Stead,et al.  Retrospective detection of laboratory cross-contamination of Mycobacterium tuberculosis cultures with use of DNA fingerprint analysis. , 1997, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[67]  D. van Soolingen,et al.  Mycobacterium tuberculosis Beijing Genotype and Risk for Treatment Failure and Relapse, Vietnam , 2003, Emerging infectious diseases.

[68]  R. Weinstein,et al.  Use of DNA Fingerprinting To Assess Tuberculosis Infection Control , 1998, Annals of Internal Medicine.

[69]  S. Svenson,et al.  Spread of Drug-Resistant Pulmonary Tuberculosis in Estonia , 2001, Journal of Clinical Microbiology.