Deciphering the mode of action of the processive polysaccharide modifying enzyme dermatan sulfate epimerase 1 by hydrogen–deuterium exchange mass spectrometry

DS-epi1 is a processive enzyme that sequentially epimerizes polysaccharide substrate towards the non-reducing end.

[1]  L. Pedersen,et al.  Role of Deacetylase Activity of N-Deacetylase/N-Sulfotransferase 1 in Forming N-Sulfated Domain in Heparan Sulfate* , 2015, The Journal of Biological Chemistry.

[2]  H. Kitagawa,et al.  Biosynthesis and function of chondroitin sulfate. , 2013, Biochimica et biophysica acta.

[3]  A. Janecke,et al.  Loss of dermatan sulfate epimerase (DSE) function results in musculocontractural Ehlers-Danlos syndrome. , 2013, Human molecular genetics.

[4]  Jian Liu,et al.  Use of biosynthetic enzymes in heparin and heparan sulfate synthesis. , 2013, Bioorganic & medicinal chemistry.

[5]  Duriya Fongmoon,et al.  Interaction of chondroitin sulfate and dermatan sulfate from various biological sources with heparin-binding growth factors and cytokines , 2013, Glycoconjugate Journal.

[6]  C. H. Sohn,et al.  Biomimetic reagents for the selective free radical and acid-base chemistry of glycans: application to glycan structure determination by mass spectrometry. , 2013, Journal of the American Chemical Society.

[7]  A. Oldberg,et al.  Biological functions of iduronic acid in chondroitin/dermatan sulfate , 2013, The FEBS journal.

[8]  Karthik Raman,et al.  Hydrogen/deuterium exchange-LC-MS approach to characterize the action of heparan sulfate C5-epimerase , 2011, Analytical and bioanalytical chemistry.

[9]  A. Tovar,et al.  The dermatan sulfate-dependent anticoagulant pathway is mostly preserved in aneurysm and in severe atherosclerotic lesions while the heparan sulfate pathway is disrupted. , 2011, Clinica chimica acta; international journal of clinical chemistry.

[10]  Yongmei Xu,et al.  The Dominating Role of N-Deacetylase/N-Sulfotransferase 1 in Forming Domain Structures in Heparan Sulfate* , 2011, The Journal of Biological Chemistry.

[11]  Y. Fukushima,et al.  Loss‐of‐function mutations of CHST14 in a new type of Ehlers‐Danlos syndrome , 2010, Human mutation.

[12]  A. Malmström,et al.  Dermatan 4-O-sulfotransferase 1 is pivotal in the formation of iduronic acid blocks in dermatan sulfate. , 2009, Glycobiology.

[13]  A. Malmström,et al.  Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin , 2009, Molecular and Cellular Biology.

[14]  A. Malmström,et al.  Two Dermatan Sulfate Epimerases Form Iduronic Acid Domains in Dermatan Sulfate* , 2009, Journal of Biological Chemistry.

[15]  D. Goodlett,et al.  Identification of the Active Site of DS-epimerase 1 and Requirement of N-Glycosylation for Enzyme Function* , 2009, Journal of Biological Chemistry.

[16]  R. Aebersold,et al.  Biosynthesis of Dermatan Sulfate , 2006, Journal of Biological Chemistry.

[17]  G. Skjåk‐Braek,et al.  Biochemical analysis of the processive mechanism for epimerization of alginate by mannuronan C-5 epimerase AlgE4. , 2004, The Biochemical journal.

[18]  Nobuyuki Itoh,et al.  Characterization of Growth Factor-binding Structures in Heparin/Heparan Sulfate Using an Octasaccharide Library* , 2004, Journal of Biological Chemistry.

[19]  H. Kitagawa,et al.  Specificities of Three Distinct Human Chondroitin/Dermatan N-Acetylgalactosamine 4-O-Sulfotransferases Demonstrated Using Partially Desulfated Dermatan Sulfate as an Acceptor , 2003, Journal of Biological Chemistry.

[20]  R. Eisenberg,et al.  Characterization of a Heparan Sulfate Octasaccharide That Binds to Herpes Simplex Virus Type 1 Glycoprotein D* , 2002, The Journal of Biological Chemistry.

[21]  B. Matthews,et al.  A structural basis for processivity , 2001, Protein science : a publication of the Protein Society.

[22]  H. Ertesvåg,et al.  Hexuronyl C5-epimerases in alginate and glycosaminoglycan biosynthesis. , 2001, Biochimie.

[23]  J. Esko,et al.  Molecular diversity of heparan sulfate. , 2001, The Journal of clinical investigation.

[24]  E. Eklund,et al.  Dermatan is a better substrate for 4-O-sulfation than chondroitin: implications in the generation of 4-O-sulfated, L-iduronate-rich galactosaminoglycans. , 2000, Archives of biochemistry and biophysics.

[25]  R. Timpl,et al.  Properties of the extracellular calcium binding module of the proteoglycan testican , 1997, FEBS letters.

[26]  A. Malmström,et al.  Biosynthesis of dermatan sulphate. Defructosylated Escherichia coli K4 capsular polysaccharide as a substrate for the D-glucuronyl C-5 epimerase, and an indication of a two-base reaction mechanism. , 1996, The Biochemical journal.

[27]  B. Domon,et al.  A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates , 1988, Glycoconjugate Journal.

[28]  M. Petitou,et al.  Biosynthesis of heparin. O-sulfation of the antithrombin-binding region. , 1988, The Journal of biological chemistry.

[29]  K. Jann,et al.  Structure and serological characteristics of the capsular K4 antigen of Escherichia coli O5:K4:H4, a fructose-containing polysaccharide with a chondroitin backbone. , 1988, European journal of biochemistry.

[30]  M. Petitou,et al.  Conformational flexibility: a new concept for explaining binding and biological properties of iduronic acid-containing glycosaminoglycans. , 1988, Trends in biochemical sciences.

[31]  L. Cöster,et al.  Self-association of scleral proteodermatan sulfate. Evidence for interaction via the dermatan sulfate side chains. , 1982, The Journal of biological chemistry.

[32]  A. Malmström,et al.  Biosynthesis of dermatan sulfate. I. Formation of L-iduronic acid residues. , 1975, The Journal of biological chemistry.

[33]  Karthik Raman,et al.  A rapid, nonradioactive assay for measuring heparan sulfate C-5 epimerase activity using hydrogen/deuterium exchange-mass spectrometry. , 2015, Methods in molecular biology.

[34]  Alan Villalobos,et al.  Designing genes for successful protein expression. , 2011, Methods in enzymology.

[35]  R. Gallo,et al.  FGF‐10 and specific structural elements of dermatan sulfate size and sulfation promote maximal keratinocyte migration and cellular proliferation , 2009, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.