Association and linkage mapping to unravel genetic architecture of phenological traits and lateral bearing in Persian walnut (Juglans regia L.)

[1]  Hadley Wickham,et al.  Easily Install and Load the 'Tidyverse' [R package tidyverse version 1.3.0] , 2019 .

[2]  D. Neale,et al.  Combining phenotype, genotype and environment to uncover genetic components underlying water use efficiency in Persian walnut. , 2019, Journal of experimental botany.

[3]  C. Pommier,et al.  The walnut genetic resources of INRA: chronological phenotypic data and ontology , 2019, BMC Research Notes.

[4]  S. Salzberg,et al.  High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome , 2019, bioRxiv.

[5]  J. Dvorak,et al.  A fine‐scale genetic linkage map reveals genomic regions associated with economic traits in walnut ( Juglans regia ) , 2019, Plant Breeding.

[6]  D. Neale,et al.  Deciphering of the Genetic Control of Phenology, Yield, and Pellicle Color in Persian Walnut (Juglans regia L.) , 2019, Front. Plant Sci..

[7]  A. M. Massah Bavani,et al.  Applying the AOGCM-AR5 models to the assessments of land suitability for walnut cultivation in response to climate change: A case study of Iran , 2019, PloS one.

[8]  Zeng-Fu Xu,et al.  Ectopic Expression of Jatropha curcas TREHALOSE-6-PHOSPHATE PHOSPHATASE J Causes Late-Flowering and Heterostylous Phenotypes in Arabidopsis but not in Jatropha , 2019, International journal of molecular sciences.

[9]  Kourosh Vahdati,et al.  Genome-wide patterns of population structure and association mapping of nut-related traits in Persian walnut populations from Iran using the Axiom J. regia 700K SNP array , 2019, Scientific Reports.

[10]  Z. Jia,et al.  Editorial: The Applications of New Multi-Locus GWAS Methodologies in the Genetic Dissection of Complex Traits , 2019, Front. Plant Sci..

[11]  D. Neale,et al.  Association genetics of carbon isotope discrimination and leaf morphology in a breeding population of Juglans regia L. , 2019, Tree Genetics & Genomes.

[12]  D. Neale,et al.  A new genomic tool for walnut (Juglans regia L.): development and validation of the high‐density Axiom™ J. regia 700K SNP genotyping array , 2018, Plant biotechnology journal.

[13]  E. Dirlewanger,et al.  Analysis of genetic diversity and structure in a worldwide walnut (Juglans regia L.) germplasm using SSR markers , 2018, PloS one.

[14]  S. Cosmulescu,et al.  Phenological calendar in some walnut genotypes grown in Romania and its correlations with air temperature , 2018, International Journal of Biometeorology.

[15]  Jinmi Yoon,et al.  Roles of Sugars in Controlling Flowering Time , 2018, Journal of Plant Biology.

[16]  C. Guillaume,et al.  Assessing frost damages using dynamic models in walnut trees: exposure rather than vulnerability controls frost risks. , 2018, Plant, cell & environment.

[17]  E. Dirlewanger,et al.  Walnut: past and future of genetic improvement , 2018, Tree Genetics & Genomes.

[18]  K. Vahdati,et al.  Persian Walnut Phenology: Effect of Chilling and Heat Requirements on Budbreak and Flowering Date , 2017 .

[19]  Sandeep Chakraborty,et al.  The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of non-structural polyphenols. , 2016, The Plant journal : for cell and molecular biology.

[20]  Zhiduan Chen,et al.  Comparative flower development of Juglans regia, Cyclocarya paliurus and Engelhardia spicata: homology of floral envelopes in Juglandaceae , 2016 .

[21]  Zhiwu Zhang,et al.  Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies , 2016, PLoS genetics.

[22]  Yongqiang Liu,et al.  Contributions of open crop straw burning emissions to PM2.5 concentrations in China , 2016 .

[23]  Bo Huang,et al.  Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology , 2016, Scientific Reports.

[24]  B. Wenden,et al.  Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium) , 2015, PloS one.

[25]  M. Saudreau,et al.  Effects of environmental factors and management practices on microclimate, winter physiology, and frost resistance in trees , 2015, Front. Plant Sci..

[26]  M. Ghahramani Journal of Modern Applied Statistical Methods the Information Criterion the Information Criterion , 2022 .

[27]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[28]  M. Stephens,et al.  fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets , 2014, Genetics.

[29]  Xiaohui Yang,et al.  Arabidopsis CHROMOSOME TRANSMISSION FIDELITY 7 (AtCTF7/ECO1) is required for DNA repair, mitosis and meiosis , 2013, The Plant journal : for cell and molecular biology.

[30]  David Levine,et al.  A high-performance computing toolset for relatedness and principal component analysis of SNP data , 2012, Bioinform..

[31]  Maria E. Eriksson,et al.  The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. , 2012, Plant, cell & environment.

[32]  Meng Li,et al.  Genetics and population analysis Advance Access publication July 13, 2012 , 2012 .

[33]  P. Arús,et al.  Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry , 2012, Heredity.

[34]  Eike Luedeling,et al.  Partial Least Squares Regression for analyzing walnut phenology in California , 2012 .

[35]  Bjarni J. Vilhjálmsson,et al.  An efficient multi-locus mixed model approach for genome-wide association studies in structured populations , 2012, Nature Genetics.

[36]  M. Schmid,et al.  Trehalose-6-Phosphate: Connecting Plant Metabolism and Development , 2011, Front. Plant Sci..

[37]  D. Ruiz,et al.  Dormancy in temperate fruit trees in a global warming context: A review , 2011 .

[38]  T. Améglio,et al.  Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control? , 2011, International journal of biometeorology.

[39]  Sylvain Delzon,et al.  Assessing the effects of climate change on the phenology of European temperate trees , 2011 .

[40]  Josyf Mychaleckyj,et al.  Robust relationship inference in genome-wide association studies , 2010, Bioinform..

[41]  R. Amiri,et al.  Correlations between Some Horticultural Traits in Walnut , 2010 .

[42]  D. Horvath Common mechanisms regulate flowering and dormancy , 2009 .

[43]  F. Dosba Breeding plantation tree crops. Temperate species , 2009 .

[44]  William J. Astle,et al.  Population Structure and Cryptic Relatedness in Genetic Association Studies , 2009, 1010.4681.

[45]  C. Kole,et al.  Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). , 2009, Genome.

[46]  K. Vahdati,et al.  Estimation of Chilling and Heat Requirements of Some Persian Walnut Cultivars and Genotypes , 2009 .

[47]  F. Stampar,et al.  Shifts in walnut (Juglans regia L.) phenology due to increasing temperatures in Slovenia , 2009 .

[48]  C. M. Sharma,et al.  The effects of climate change on plant phenology , 2008 .

[49]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[50]  Noah A. Rosenberg,et al.  CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure , 2007, Bioinform..

[51]  J. Peñuelas,et al.  European phenological response to climate change matches the warming pattern , 2006 .

[52]  M. Aradhya,et al.  7. Cladistic Biogeography of Juglans ( Juglandaceae) Based on Chloroplast DNA Intergenic Spacer Sequences , 2006 .

[53]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[54]  Darab Hassani,et al.  INVESTIGATION ON GENETIC DIVERSITY OF PERSIAN WALNUT AND EVALUATION OF PROMISING GENOTYPES , 2005 .

[55]  Mark Daly,et al.  Haploview: analysis and visualization of LD and haplotype maps , 2005, Bioinform..

[56]  N. Rosenberg distruct: a program for the graphical display of population structure , 2003 .

[57]  方福德 单核苷酸多态性(single nucleotide polymorphism) , 2003 .

[58]  S. Gabriel,et al.  The Structure of Haplotype Blocks in the Human Genome , 2002, Science.

[59]  T. Rötzer,et al.  Response of tree phenology to climate change across Europe , 2001 .

[60]  Gale,et al.  FAO – Food and Agriculture Organization , 2000, A Concise Encyclopedia of the United Nations.

[61]  Z. Zeng,et al.  Multiple interval mapping for quantitative trait loci. , 1999, Genetics.

[62]  R. Amasino,et al.  FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering , 1999, Plant Cell.

[63]  W. Beavis QTL Analyses: Power, Precision, and Accuracy , 1997, Molecular Dissection of Complex Traits.

[64]  R. Sederoff,et al.  Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. , 1994, Genetics.

[65]  常吉 俊宏 Allele Specific PCR , 1992 .

[66]  E. Germain,et al.  Inheritance of late leafing and lateral bud fruitfulness in walnut (Juglans regia L.), phenotypic correlations among some traits of the trees. , 1990 .

[67]  P. Hansche,et al.  Estimates of Quantitative Genetic Properties of Walnut and Their Implications for Cultivar Improvement1 , 1972, Journal of the American Society for Horticultural Science.

[68]  R. Woodworth MEIOSIS OF MICROSPOROGENESIS IN THE JUGLANDACEAE , 1930 .

[69]  K. Vahdati,et al.  Advances in Persian Walnut (Juglans regia L.) Breeding Strategies , 2019, Advances in Plant Breeding Strategies: Nut and Beverage Crops.

[70]  N. Oreskes,et al.  Consensus on consensus: a synthesis of consensus estimates on human-caused global warming , 2015 .

[71]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[72]  G. McGranahan,et al.  Breeding Walnuts (Juglans Regia) , 2009 .

[73]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[74]  J. Ooijen,et al.  JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations , 2006 .

[75]  D. Pot,et al.  Distribution of genomic regions differentiating oak species assessed by QTL detection , 2004, Heredity.

[76]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[77]  R. Voorrips MapChart: software for the graphical presentation of linkage maps and QTLs. , 2002, The Journal of heredity.

[78]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[79]  J. Ballington,et al.  Genetic resources of temperate fruit and nut crops , 1990 .

[80]  H. Behnke Plant Trichomes — Structure and Ultrastructure: General Terminology, Taxonomic Applications, and Aspects of Trichome-Bacteria Interaction in Leaf Tips of Dioscorea , 1984 .

[81]  D. D. Kosambi The estimation of map distances from recombination values. , 1943 .