Selective Postmodification of Copolymer Backbones Bearing Different Activated Esters with Disparate Reactivities.

In this communication, we report an easy method for introducing functional groups into polymer structures by successively reacting two different activated ester functionalities (pentafluorophenyl (PFP) ester and azlactone (AZ)) with different functional amine compounds. By exploiting the difference in reactivity of the two activated esters (PFP and AZ) toward different amino compounds, we demonstrate, for the first time, a selective modification of the different activated ester groups, thereby introducing functional groups to the polymer backbone in a controlled manner. Statistical and block copolymers of vinyl dimethyl azlactone (VDM) and pentafluorophenyl acrylate (PFPA), i.e.,(p(VDM-stat-PFPA)) and (p(VDM-block-PFPA)), were prepared using reversible addition–fragmentation transfer (RAFT) polymerization and subsequently modified using a library of amino compounds, yielding macromolecules with bespoke functionality. In additional work, the functional macromolecules were self-assembled into nanoparticles.

[1]  Krzysztof Matyjaszewski,et al.  Nanostructured functional materials prepared by atom transfer radical polymerization , 2009, Nature Chemistry.

[2]  Kato L. Killops,et al.  Development of Thermal and Photochemical Strategies for Thiol−Ene Click Polymer Functionalization , 2008 .

[3]  Laurent Fontaine,et al.  Stable azlactone-functionalized nanoparticles prepared from thermoresponsive copolymers synthesized by RAFT polymerization , 2011 .

[4]  A. Lowe,et al.  Thiol-ene “click” reactions and recent applications in polymer and materials synthesis , 2010 .

[5]  T. P. Davis,et al.  Synthesis and thermoresponsive solution properties of poly[oligo(ethylene glycol) (meth)acrylamide]s: biocompatible PEG analogues , 2012 .

[6]  D. Haddleton,et al.  Poly(azlactone)s: versatile scaffolds for tandem post-polymerisation modification and glycopolymer synthesis , 2013 .

[7]  U. Schubert,et al.  pH degradable dendron-functionalized poly(2-ethyl-2-oxazoline) prepared by a cascade “double-click” reaction , 2013 .

[8]  A. Hızal,et al.  One‐pot synthesis of star‐block copolymers using double click reactions , 2008 .

[9]  Amine-reactive polymers synthesized by RAFT polymerization using an azlactone functional trithiocarbonate RAFT agent. , 2012, Macromolecular rapid communications.

[10]  H. Ringsdorf,et al.  Model reactions for synthesis of pharmacologically active polymers by way of monomeric and polymeric reactive esters. , 1972, Angewandte Chemie.

[11]  B. Sumerlin,et al.  Macromolecular Engineering through Click Chemistry and Other Efficient Transformations , 2010 .

[12]  C. Barner‐Kowollik,et al.  Ambient Temperature Synthesis of a Versatile Macromolecular Building Block: Cyclopentadienyl-Capped Polymers , 2010 .

[13]  H. Klok Biological-synthetic hybrid block copolymers: Combining the best from two worlds , 2005 .

[14]  H. Durmaz,et al.  Linear tetrablock quaterpolymers via triple click reactions, azide‐alkyne, diels–alder, and nitroxide radical coupling in a one‐pot fashion , 2011 .

[15]  Krzysztof Matyjaszewski,et al.  Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes , 1995 .

[16]  Patrick Theato,et al.  Temperature- and Light-Responsive Polyacrylamides Prepared by a Double Polymer Analogous Reaction of Activated Ester Polymers , 2009 .

[17]  R. O’Reilly,et al.  Additive-free clicking for polymer functionalization and coupling by tetrazine-norbornene chemistry. , 2011, Journal of the American Chemical Society.

[18]  L. Fontaine,et al.  Introducing the Azlactone Functionality into Polymers through Controlled Radical Polymerization: Strategies and Recent Developments , 2012 .

[19]  F. D. Prez,et al.  One-pot, additive-free preparation of functionalized polyurethanes via amine-thiol-ene conjugation , 2013 .

[20]  K. Matyjaszewski,et al.  Controlled Living Radical Polymerization - Halogen Atom-Transfer Radical Polymerization Promoted by a Cu(I)Cu(II) Redox Process , 1995 .

[21]  Maarten Danial,et al.  Side-chain peptide-synthetic polymer conjugates via tandem "ester-amide/thiol-ene" post-polymerization modification of poly(pentafluorophenyl methacrylate) obtained using ATRP. , 2011, Biomacromolecules.

[22]  C. Boyer,et al.  Synthesis and postfunctionalization of well‐defined star polymers via “double” click chemistry , 2011 .

[23]  Jay A. Syrett,et al.  Optimizing the generation of narrow polydispersity ‘arm-first’ star polymers made using RAFT polymerization , 2011 .

[24]  Craig J. Hawker,et al.  The Convergence of Synthetic Organic and Polymer Chemistries , 2005, Science.

[25]  Gordon K. Hamer,et al.  Narrow molecular weight resins by a free-radical polymerization process , 1993 .

[26]  P. Théato,et al.  Sequential conversion of orthogonally functionalized diblock copolymers based on pentafluorophenyl esters , 2010 .

[27]  Harm-Anton Klok,et al.  Synthesis of functional polymers by post-polymerization modification. , 2009, Angewandte Chemie.

[28]  C. Boyer,et al.  One-pot synthesis and biofunctionalization of glycopolymers via RAFT polymerization and thiol-ene reactions. , 2009, Chemical communications.

[29]  H. Durmaz,et al.  Heterograft Copolymers via Double Click Reactions Using One-Pot Technique , 2008 .

[30]  F. D. Du Prez,et al.  One-Pot Double Modification of p(NIPAAm): A Tool for Designing Tailor-Made Multiresponsive Polymers. , 2013, ACS macro letters.

[31]  M. Sawamoto,et al.  Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris- (triphenylphosphine)ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization , 1995 .

[32]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[33]  A. L. Demirel,et al.  Multiarm star triblock terpolymers via sequential double click reactions , 2010 .

[34]  Paolo Ferruti,et al.  High polymers of acrylic and methacrylic esters of N-hydroxysuccinimide as polyacrylamide and polymethacrylamide precursors , 1972 .

[35]  Bin Sun,et al.  Azlactone-functionalized polymers as reactive templates for parallel polymer synthesis: synthesis and screening of a small library of cationic polymers in the context of DNA delivery. , 2010, Chemical communications.

[36]  C. Barner‐Kowollik,et al.  Limitations of radical thiol-ene reactions for polymer-polymer conjugation , 2010 .

[37]  C. Boyer,et al.  Intracellular nitric oxide delivery from stable NO-polymeric nanoparticle carriers. , 2013, Chemical communications.

[38]  M. Taşdelen,et al.  Diels–Alder “click” reactions: recent applications in polymer and material science , 2011 .

[39]  C. Barner‐Kowollik,et al.  Has Click Chemistry Lead to a Paradigm Shift in Polymer Material Design , 2009 .

[40]  L. Fontaine,et al.  Thermoresponsive block copolymers containing reactive azlactone groups and their bioconjugation with lysozyme , 2013 .

[41]  R. Zentel,et al.  From defined reactive diblock copolymers to functional HPMA-based self-assembled nanoaggregates. , 2008, Biomacromolecules.

[42]  Felix Kratz,et al.  Polymer therapeutics: concepts and applications. , 2006, Angewandte Chemie.

[43]  S. Perrier,et al.  Bioapplications of RAFT polymerization. , 2009, Chemical reviews.

[44]  Christopher Barner-Kowollik,et al.  Rapid Bonding/Debonding on Demand: Reversibly Cross-Linked Functional Polymers via Diels−Alder Chemistry , 2010 .

[45]  S. Laurent,et al.  Polymer–gold nanohybrids with potential use in bimodal MRI/CT: enhancing the relaxometric properties of Gd(III) complexes , 2012 .

[46]  P. Théato,et al.  Reactive surface coatings based on polysilsesquioxanes: controlled functionalization for specific protein immobilization. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[47]  C. Hawker,et al.  "Clicking" polymers or just efficient linking: what is the difference? , 2011, Angewandte Chemie.

[48]  Karen L. Wooley,et al.  Model Diels-Alder Studies for the Creation of Amphiphilic Cross-Linked Networks as Healable, Antibiofouling Coatings. , 2012, ACS macro letters.

[49]  R. Duncan The dawning era of polymer therapeutics , 2003, Nature Reviews Drug Discovery.

[50]  M. E. Buck,et al.  Fabrication and selective functionalization of amine-reactive polymer multilayers on topographically patterned microwell cell culture arrays. , 2011, Biomacromolecules.

[51]  G M Whitesides,et al.  Effective inhibitors of hemagglutination by influenza virus synthesized from polymers having active ester groups. Insight into mechanism of inhibition. , 1995, Journal of medicinal chemistry.

[52]  P. Théato,et al.  RAFT Polymerization of Pentafluorophenyl Methacrylate: Preparation of Reactive Linear Diblock Copolymers , 2005 .

[53]  R. Grubbs,et al.  Efficient Synthesis of Narrowly Dispersed Brush Polymers via Living Ring-Opening Metathesis Polymerization of Macromonomers , 2009 .

[54]  Ian D. Rees,et al.  Hybrid dendritic–linear graft copolymers: Steric considerations in “coupling to” approach , 2000 .

[55]  S. Laurent,et al.  Macromolecular Ligands for Gadolinium MRI Contrast Agents , 2012 .

[56]  A. Sanyal,et al.  Double click reaction strategies for polymer conjugation and post-functionalization of polymers , 2012 .

[57]  U. Schubert,et al.  Clicking polymers: a straightforward approach to novel macromolecular architectures. , 2007, Chemical Society reviews.

[58]  R. Zentel,et al.  Synthesis of pentafluorophenyl(meth)acrylate polymers: New precursor polymers for the synthesis of multifunctional materials , 2005 .

[59]  W. Binder,et al.  ‘Click’ Chemistry in Polymer and Materials Science , 2007 .

[60]  Andreas F. M. Kilbinger,et al.  ROMP Copolymers for Orthogonal Click Functionalizations , 2012 .

[61]  M. Weck,et al.  Covalent and orthogonal multi-functionalization of terpolymers , 2009 .

[62]  C. Boyer,et al.  RAFT polymerization and thiol chemistry: a complementary pairing for implementing modern macromolecular design. , 2011, Macromolecular rapid communications.

[63]  P. Théato,et al.  Reactive surface coatings based on polysilsesquioxanes: defined adjustment of surface wettability. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[64]  I. Hamley,et al.  Nanotechnology with soft materials. , 2003, Angewandte Chemie.

[65]  J. Chiefari,et al.  Living free-radical polymerization by reversible addition - Fragmentation chain transfer: The RAFT process , 1998 .

[66]  David M. Haddleton,et al.  Glycopolymers via catalytic chain transfer polymerisation (CCTP), Huisgens cycloaddition and thiol-ene double click reactions. , 2009, Chemical communications.

[67]  C. Boyer,et al.  Building nanostructures using RAFT polymerization , 2011 .

[68]  Leonie Barner,et al.  Surface Modification of Poly(divinylbenzene) Microspheres via Thiol-Ene Chemistry and Alkyne-Azide Click Reactions , 2009 .

[69]  Richard A. Evans,et al.  Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond , 2010 .

[70]  R. O’Reilly,et al.  A "Mix-and-Click" Approach to Double Core-Shell Micelle Functionalization. , 2012, ACS macro letters.

[71]  C. Boyer,et al.  Factors influencing the synthesis and the post-modification of PEGylated pentafluorophenyl acrylate containing copolymers , 2013 .

[72]  C. Marquis,et al.  Acid Degradable and Biocompatible Polymeric Nanoparticles for the Potential Codelivery of Therapeutic Agents , 2011 .

[73]  R. Sanyal,et al.  Orthogonally functionalizable copolymers based on a novel reactive carbonate monomer , 2010 .