Inapproximability results and bounds for the Helly and Radon numbers of a graph

Abstract Let C be a convexity on a set X and denote the convex hull of S ⊆ X in C by H ( S ) . The Helly number (Radon number) of C is the minimum integer k such that, for every S ⊆ X with at least k + 1 elements, it holds ⋂ v ∈ S H ( S ∖ { v } ) ≠ ∅ (there is a bipartition of S into sets S 1 and S 2 with H ( S 1 ) ∩ H ( S 2 ) ≠ ∅ ). In this work, we show that there is no approximation algorithm for the Helly or the Radon number of a graph G of order n in the geodetic convexity to within a factor n 1 − e for any e > 0 , unless P = NP, even if G is bipartite. Furthermore, we present upper bounds for both parameters in the geodetic convexity of bipartite graphs and characterize the families of graphs achieving the bound for the Helly number.

[1]  E. C. Milner,et al.  Some remarks on simple tournaments , 1972 .

[2]  Jayme Luiz Szwarcfiter,et al.  Complexity results related to monophonic convexity , 2010, Discret. Appl. Math..

[3]  E. Helly Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. , 1923 .

[4]  David Zuckerman,et al.  Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .

[5]  Pierre Duchet,et al.  Convex sets in graphs, II. Minimal path convexity , 1987, J. Comb. Theory B.

[6]  Ignacio M. Pelayo,et al.  Geodesic Convexity in Graphs , 2013 .

[7]  J. Radon Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .

[8]  Jayme Luiz Szwarcfiter,et al.  An upper bound on the P3-Radon number , 2012, Discret. Math..

[9]  M. Farber,et al.  Convexity in graphs and hypergraphs , 1986 .

[10]  D. Rautenbach,et al.  An upper bound on the P 3-Radon number Mitre , 2012 .

[11]  H. Tverberg A Generalization of Radon's Theorem , 1966 .

[12]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[13]  Robert E. Jamison,et al.  A Helly theorem for convexity in graphs , 1984, Discret. Math..

[14]  Jayme Luiz Szwarcfiter,et al.  Algorithmic and structural aspects of the P3-Radon number , 2013, Ann. Oper. Res..

[15]  F. W. Levi,et al.  On Helly's Theorem and the Axioms of Convexity , 1951 .

[16]  Gary Chartrand,et al.  Convex sets in graphs , 1999 .

[17]  Dieter Rautenbach,et al.  Open packing, total domination, and the P3-Radon number , 2013, Discret. Math..