Octahedral tilting dominated phase transition in compressed double perovskite Ba2SmBiO6

The comprehension of structural behaviors in double perovskites is crucial for their functional optimization, especially when applying external regulations. Here, to inquire about potential structures with better magnetic performance, high-pressure phase transformation in double perovskite Ba2SmBiO6 was first investigated up to 50 GPa via in situ high-pressure x-ray diffraction and Raman spectroscopy. A pressure-induced phase transition from cubic Fm-3m to orthorhombic Pnma is discovered at 4.8 GPa, accompanied by the splitting of the diffraction peaks. Above 19.8 GPa, the new phase becomes distorted as shown by the peak recombination and broadening. The variation of Raman spectra also confirms the formation and distortion of the high-pressure phase during compression, through the evolution of Bi–O stretching, Bi–O bending, octahedral rotation, and Ba-sites translation modes. The analysis of tilt angles and distortion factor evinced that the octahedral BiO6 tilting is the key factor for the phase transition occurrence. Based on the Mulliken populations analyses, the Bi–O bonds undergo a covalent-ionic-antibonding transition across the phase transition under compression. Our exploration of the phase transition mechanism guides the modulation of the magnetic and electronic properties under extreme conditions.

[1]  A. Garg,et al.  Temperature dependent X‐ray diffraction and Raman spectroscopy studies of polycrystalline YCrO 3 ceramics across the T C ~ 460 K , 2020 .

[2]  Wenge Yang,et al.  Pressure-enhanced interplay between lattice, spin, and charge in the mixed perovskite La2FeMnO6 , 2019, Physical Review B.

[3]  Wenge Yang,et al.  Pressure-Induced Structural and Electronic Transition in Sr2ZnWO6 Double Perovskite. , 2016, Inorganic chemistry.

[4]  M. Karppinen,et al.  A2B′B″O6 perovskites: A review , 2015 .

[5]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[6]  S. Sofie,et al.  Electrical conductivity of Sr2−xVMoO6−y (x = 0.0, 0.1, 0.2) double perovskites , 2013 .

[7]  V. Sankaranarayanan,et al.  Exchange bias and memory effect in double perovskite Sr2FeCoO6 , 2012 .

[8]  V. Sankaranarayanan,et al.  Exchange bias and memory effect in Sr$_2$FeCoO$_6$ , 2012, 1209.3720.

[9]  J. Kimpton,et al.  The effect of disorder in Ba2YTaO6 on the tetragonal to cubic phase transition , 2011 .

[10]  J. Bos,et al.  Persistence of the valence bond glass state in the double perovskites Ba2-xSrxYMoO6 , 2010 .

[11]  A. Ayala,et al.  Temperature-dependent Raman spectra of Ba2BiSbO6 ceramics , 2009 .

[12]  Sugata Ray,et al.  Nature of "disorder" in the ordered double perovskite Sr2FeMoO6. , 2009, Physical review letters.

[13]  C. Vijayakumar,et al.  FT-Raman and FT-IR vibrational spectroscopic studies of nanocrystalline Ba2RESbO6 (RE = Sm, Gd, Dy and Y) perovskites , 2009 .

[14]  M. Ibarra,et al.  Temperature dependence of magnetization under high fields in Re-based double perovskites , 2007 .

[15]  J. Igartua,et al.  Crystal Structure and Phase Transitions of Sr2CdWO6 , 2007 .

[16]  C. Bernuy-López,et al.  Sr2MgMoO6-δ: Structure, Phase Stability, and Cation Site Order Control of Reduction , 2007 .

[17]  William R. Gemmill,et al.  Compression mechanisms of symmetric and Jahn–Teller distorted octahedra in double perovskites: A2CuWO6 (A=Sr, Ba), Sr2CoMoO6, and La2LiRuO6 , 2006 .

[18]  John B Goodenough,et al.  Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells , 2006, Science.

[19]  T. Vogt,et al.  Pressure-Induced Phase Transition and Octahedral Tilt System Change of Ba2BiSbO6 , 2006 .

[20]  S. Ivanov,et al.  High temperature phase transition of the magnetoelectric double perovskite Sr2NiMoO6 by neutron diffraction , 2006 .

[21]  B. Dabrowski,et al.  Nuclear and magnetic structural properties of Ba{sub 2}FeMoO{sub 6} , 2005 .

[22]  J. Alonso,et al.  Charge transfer and disorder in double perovskites , 2004 .

[23]  M. T. Casais,et al.  Preparation, Crystal and Magnetic Structure of the Double Perovskites Ba2CoBO6 (B = Mo, W) , 2002 .

[24]  J. Alonso,et al.  Origin of neutron magnetic scattering in antisite-disordered Sr 2 FeMoO 6 double perovskites , 2001, cond-mat/0111524.

[25]  M. Misono,et al.  Advances in designing perovskite catalysts , 2001 .

[26]  Rustum Roy,et al.  The perovskite structure – a review of its role in ceramic science and technology , 2000 .

[27]  K.-I. Kobayashi,et al.  Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure , 1998, Nature.

[28]  C. Thomsen,et al.  Raman spectroscopy of orthorhombic perovskitelike YMnO_{3} and LaMnO_{3} , 1998 .

[29]  P. Woodward Octahedral Tilting in Perovskites. I. Geometrical Considerations , 1997 .

[30]  Pickett,et al.  Electronic structure and half-metallic transport in the La1-xCaxMnO3 system. , 1996, Physical review. B, Condensed matter.

[31]  A. Jacobson,et al.  Syntheses, Structures, and Magnetism of Barium/Rare-Earth/Bismuth Double Perovskites. Crystal Structures of Ba2MBiO6 (M = Ce, Pr, Nd, Tb, Yb) by Powder Neutron Diffraction , 1995 .

[32]  Yusheng Zhao,et al.  Thermal expansion and structural distortion of perovskite — data for NaMgF3 perovskite. Part I , 1993 .

[33]  B. Gu,et al.  Study of the Order‐Disorder Transition in A(B′B″)O3 Perovskite Type Ceramics , 1991 .

[34]  H. Müller-Buschbaum,et al.  Eine Anmerkung Über Geordnete Perowskite mit Bi5+ : Ba2BiMo6 (M ≡ Y,Dy) , 1990 .

[35]  G. Thornton,et al.  A neutron diffraction determination of the structures of Ba2SbVBiIIIO6 and Ba2BiVBiIIIO6 , 1978 .

[36]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[37]  P. Woodward,et al.  Structures of ordered tungsten- or molybdenum-containing quaternary perovskite oxides , 2012 .

[38]  A. Matsushita,et al.  Photocatalytic activities of Ba2RBiO6 (R = La, Ce, Nd, Sm, Eu, Gd, Dy) under visible light irradiation , 2010 .