A damping preconditioner for time-harmonic wave equations in fluid and elastic material

A physical damping is considered as a preconditioning technique for acoustic and elastic wave scattering. The earlier preconditioners for the Helmholtz equation are generalized for elastic materials and three-dimensional domains. An algebraic multigrid method is used in approximating the inverse of damped operators. Several numerical experiments demonstrate the behavior of the method in complicated two-dimensional and three-dimensional domains.

[1]  Jian-Ming Jin,et al.  Eliminating interior resonances in finite element-boundary integral methods for scattering , 1992 .

[2]  Tuomo Rossi,et al.  Controllability method for the Helmholtz equation with higher-order discretizations , 2007, J. Comput. Phys..

[3]  Elisabeth Larsson,et al.  Iterative solution of the Helmholtz equation , 1996 .

[4]  Eli Turkel,et al.  Numerical Methods and Nature , 2006, J. Sci. Comput..

[5]  Michael Griebel,et al.  An Algebraic Multigrid Method for Linear Elasticity , 2003, SIAM J. Sci. Comput..

[6]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[7]  C. Farhat,et al.  FETI-DPH: A DUAL-PRIMAL DOMAIN DECOMPOSITION METHOD FOR ACOUSTIC SCATTERING , 2005 .

[8]  Yuri A. Kuznetsov,et al.  Fictitious Domain Methods for the Numerical Solution of Two-Dimensional Scattering Problems , 1998 .

[9]  C. Farhat,et al.  Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems , 2000 .

[10]  Kazufumi Ito,et al.  A domain decomposition solver for acoustic scattering by elastic objects in layered media , 2008, J. Comput. Phys..

[11]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[12]  Tuomo Rossi,et al.  A Parallel Fictitious Domain Method for the Three-Dimensional Helmholtz Equation , 2002, SIAM J. Sci. Comput..

[13]  Ezio Faccioli,et al.  Spectral-domain decomposition methods for the solution of acoustic and elastic wave equations , 1996 .

[14]  Tuomo Rossi,et al.  Time-harmonic elasticity with controllability and higher-order discretization methods , 2008, J. Comput. Phys..

[15]  Vladimir Rokhlin,et al.  Solving electromagnetic scattering problems at resonance frequencies , 1990 .

[16]  O. Cessenat,et al.  Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem , 1998 .

[17]  Oliver G. Ernst,et al.  A finite-element capacitance matrix method for exterior Helmholtz problems , 1996 .

[18]  J. Craggs Applied Mathematical Sciences , 1973 .

[19]  Patrick Joly,et al.  Second-order absorbing boundary conditions for the wave equation: a solution for the corner problem , 1990 .

[20]  Jari P. Kaipio,et al.  The Ultra-Weak Variational Formulation for Elastic Wave Problems , 2004, SIAM J. Sci. Comput..

[21]  Ferdinand Kickinger,et al.  Algebraic Multi-grid for Discrete Elliptic Second-Order Problems , 1998 .

[22]  Xiaobing Feng,et al.  A domain decomposition method for solving a Helmholtz-like problem in elasticity based on the Wilson nonconforming element , 1997 .

[23]  Cornelis Vuik,et al.  On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .

[24]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[25]  A. Brandt,et al.  WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS , 1997 .

[26]  Jing Li,et al.  An iterative domain decomposition method for the solution of a class of indefinite problems in computational structural dynamics , 2005 .

[27]  Erkki Heikkola,et al.  An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation , 2007, J. Comput. Phys..

[28]  Y. A. Erlangga,et al.  PRECONDITIONING A FINITE ELEMENT SOLVER OF THE EXTERIOR HELMHOLTZ EQUATION , 2006 .

[29]  Mardochée Magolu monga Made,et al.  Incomplete factorization-based preconditionings for solving the Helmholtz equation , 2001 .

[30]  Patrick Joly,et al.  Domain Decomposition Method for Harmonic Wave Propagation : A General Presentation , 2000 .

[31]  Michael B. Giles,et al.  Preconditioned iterative solution of the 2D Helmholtz equation , 2002 .

[32]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[33]  Donald J. Nefske,et al.  Structural-acoustic finite element analysis of the automobile passenger compartment: A review of current practice , 1982 .

[34]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .

[35]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[36]  L. Thompson A review of finite-element methods for time-harmonic acoustics , 2006 .

[37]  Dianne P. O'Leary,et al.  A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..

[38]  Sanna Mönkölä,et al.  Comparison between the shifted-Laplacian preconditioning and the controllability methods for computational acoustics , 2010, J. Comput. Appl. Math..

[39]  Martin J. Gander,et al.  Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..

[40]  J. Toivanen,et al.  A fast iterative solver for scattering by elastic objects in layered media , 2007 .

[41]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[42]  Cornelis Vuik,et al.  Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian , 2007, SIAM J. Sci. Comput..

[43]  René-Édouard Plessix,et al.  Separation-of-variables as a preconditioner for an iterative Helmholtz solver , 2003 .

[44]  Patrick Joly,et al.  FICTITIOUS DOMAINS, MIXED FINITE ELEMENTS AND PERFECTLY MATCHED LAYERS FOR 2-D ELASTIC WAVE PROPAGATION , 2001 .