Poisson group testing: A probabilistic model for nonadaptive streaming boolean compressed sensing

We introduce a novel probabilistic group testing framework, termed Poisson group testing, in which the number of defectives follows a right-truncated Poisson distribution. The Poisson model applies to a number of biological testing scenarios, where the subjects are assumed to be ordered based on their arrival times and where the probability of being defective decreases with time. Our main result is an information-theoretic upper bound on the minimum number of tests required to achieve an average probability of detection error asymptotically converging to zero.

[1]  D. Du,et al.  Combinatorial Group Testing and Its Applications , 1993 .

[2]  George Atia,et al.  Boolean Compressed Sensing and Noisy Group Testing , 2009, IEEE Transactions on Information Theory.

[3]  Emanuel Knill,et al.  Lower bounds for identifying subset members with subset queries , 1994, SODA '95.

[4]  Annalisa De Bonis,et al.  Optimal Two-Stage Algorithms for Group Testing Problems , 2005, SIAM J. Comput..

[5]  P.-O. Anderson A construction of superimposed codes for the Euclidean channel , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[6]  Frank K. Hwang,et al.  Isolating a Single Defective Using Group Testing , 1974 .

[7]  Toby Berger,et al.  Asymptotic efficiency of two-stage disjunctive testing , 2002, IEEE Trans. Inf. Theory.

[8]  R. Dorfman The Detection of Defective Members of Large Populations , 1943 .

[9]  Olgica Milenkovic,et al.  Weighted Superimposed Codes and Constrained Integer Compressed Sensing , 2008, IEEE Transactions on Information Theory.

[10]  Arkadii G. D'yachkov,et al.  Lectures on Designing Screening Experiments , 2014, ArXiv.

[11]  Olgica Milenkovic,et al.  Semi-quantitative group testing , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[12]  Pingzhi Fan,et al.  Superimposed codes for the multiaccess binary adder channel , 1995, IEEE Trans. Inf. Theory.

[13]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[14]  Peter Damaschke Threshold Group Testing , 2005, Electron. Notes Discret. Math..

[15]  L. L. Cam,et al.  An approximation theorem for the Poisson binomial distribution. , 1960 .

[16]  Herwig Bruneel,et al.  A queueing model for general group screening policies and dynamic item arrivals , 2010, Eur. J. Oper. Res..

[17]  Alexander Barg,et al.  Digital fingerprinting codes: problem statements, constructions, identification of traitors , 2003, IEEE Trans. Inf. Theory.

[18]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[19]  Wolfgang Stadje,et al.  Applications of bulk queues to group testing models with incomplete identification , 2007, Eur. J. Oper. Res..

[20]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[21]  Olgica Milenkovic,et al.  Semiquantitative Group Testing , 2014, IEEE Transactions on Information Theory.

[22]  Frank K. Hwang,et al.  A Generalized Binomial Group Testing Problem , 1975 .

[23]  Jack K. Wolf,et al.  Born again group testing: Multiaccess communications , 1985, IEEE Trans. Inf. Theory.

[24]  Marc Mézard,et al.  Group Testing With Random Pools: Optimal Two-Stage Algorithms , 2007, IEEE Transactions on Information Theory.

[25]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[26]  Olgica Milenkovic,et al.  Symmetric group testing and superimposed codes , 2011, 2011 IEEE Information Theory Workshop.

[27]  D. Du,et al.  Pooling Designs And Nonadaptive Group Testing: Important Tools For Dna Sequencing , 2006 .