Tensor Multi-linear MMSE Estimation Using the Einstein Product

[1]  Rafael T. de Sousa,et al.  Tensor-Based Channel Estimation for Massive MIMO-OFDM Systems , 2019, IEEE Access.

[2]  Victor Y. Pan,et al.  An Improved Newton Iteration for the Generalized Inverse of a Matrix, with Applications , 1991, SIAM J. Sci. Comput..

[3]  Michael K. Ng,et al.  An eigenvalue problem for even order tensors with its applications , 2016 .

[4]  Na Li,et al.  Solving Multilinear Systems via Tensor Inversion , 2013, SIAM J. Matrix Anal. Appl..

[5]  Changjiang Bu,et al.  Moore–Penrose inverse of tensors via Einstein product , 2016 .

[6]  Harry Leib,et al.  Sphere Decoding for MIMO Systems with Newton Iterative Matrix Inversion , 2013, IEEE Communications Letters.

[7]  Joseph R. Cavallaro,et al.  Large-Scale MIMO Detection for 3GPP LTE: Algorithms and FPGA Implementations , 2014, IEEE Journal of Selected Topics in Signal Processing.

[8]  Montse Pardàs,et al.  Deleted DOI: Audiovisual Head Orientation Estimation with Particle Filtering in Multisensor Scenarios , 2008 .

[9]  Andreas Peter Burg,et al.  Algorithm and VLSI architecture for linear MMSE detection in MIMO-OFDM systems , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[10]  Laurence T. Yang,et al.  A Tensor-Based Approach for Big Data Representation and Dimensionality Reduction , 2014, IEEE Transactions on Emerging Topics in Computing.

[11]  Salah Bourennane,et al.  Multidimensional filtering based on a tensor approach , 2005, Signal Process..

[12]  Zhen Yang,et al.  Channel estimation for MIMO multi-relay systems using a tensor approach , 2014, EURASIP J. Adv. Signal Process..

[13]  Geert Leus,et al.  Enhanced turbo MMSE equalization for MIMO-OFDM over rapidly time-varying frequency-selective channels , 2009, 2009 IEEE 10th Workshop on Signal Processing Advances in Wireless Communications.

[14]  Hyuncheol Park,et al.  Modified Successive Interference Cancellation for MIMO OFDM on Doubly Selective Channels , 2009, VTC Spring 2009 - IEEE 69th Vehicular Technology Conference.

[15]  Shuichi Ohno,et al.  SPC02-5: Pilot-Aided Channel Estimation and Viterbi Equalization for OFDM over Doubly-Selective Channel , 2006, IEEE Globecom 2006.

[16]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[17]  Amit Surana,et al.  Multilinear Time Invariant System Theory , 2019, 2019 Proceedings of the Conference on Control and its Applications.

[18]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[19]  João Cesar M. Mota,et al.  PARAFAC-based channel estimation and data recovery in nonlinear MIMO spread spectrum communication systems , 2011, Signal Process..

[20]  Nikos D. Sidiropoulos,et al.  Tensor Decomposition for Signal Processing and Machine Learning , 2016, IEEE Transactions on Signal Processing.

[21]  Nikos D. Sidiropoulos,et al.  Blind PARAFAC receivers for DS-CDMA systems , 2000, IEEE Trans. Signal Process..

[22]  Laura Corazza,et al.  Universities and Multistakeholder Engagement for Sustainable Development: A Research and Technology Perspective , 2021, IEEE Transactions on Engineering Management.

[23]  Bruce F. Cockburn,et al.  An Improved SOS-Based Fading Channel Emulator , 2007, 2007 IEEE 66th Vehicular Technology Conference.

[24]  Julien Marot,et al.  Lower-Rank Tensor Approximation and Multiway Filtering , 2008, SIAM J. Matrix Anal. Appl..

[25]  Devin A. Matthews,et al.  High-Performance Tensor Contraction without Transposition , 2016, SIAM J. Sci. Comput..

[26]  André Lima Férrer de Almeida,et al.  Tensor Space-Time-Frequency Coding With Semi-Blind Receivers for MIMO Wireless Communication Systems , 2014, IEEE Transactions on Signal Processing.

[27]  Stephen S. Yau,et al.  Tensor-Train-Based High-Order Dominant Eigen Decomposition for Multimodal Prediction Services , 2021, IEEE Transactions on Engineering Management.

[28]  Andrzej Cichocki,et al.  Era of Big Data Processing: A New Approach via Tensor Networks and Tensor Decompositions , 2014, ArXiv.

[29]  S. Bourennane,et al.  Multidimensional estimation based on a tensor decomposition , 2003, IEEE Workshop on Statistical Signal Processing, 2003.

[30]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[31]  Harry Leib,et al.  A Tensor Based Framework for Multi-Domain Communication Systems , 2020, IEEE Open Journal of the Communications Society.

[32]  Harry Leib,et al.  OFDM symbol detection integrated with channel multipath gains estimation for doubly-selective fading channels , 2017, Phys. Commun..

[33]  Qingwen Wang,et al.  Iterative algorithms for solving some tensor equations , 2019 .

[34]  Julien Marot,et al.  About Advances in Tensor Data Denoising Methods , 2008, EURASIP J. Adv. Signal Process..

[35]  Suhas N. Diggavi,et al.  Intercarrier interference in MIMO OFDM , 2002, IEEE Trans. Signal Process..

[36]  B. Zheng,et al.  Tensor inversion and its application to the tensor equations with Einstein product , 2018, Linear and Multilinear Algebra.

[37]  Nico Vervliet,et al.  Breaking the Curse of Dimensionality Using Decompositions of Incomplete Tensors: Tensor-based scientific computing in big data analysis , 2014, IEEE Signal Processing Magazine.