Analogies and di"erences between quantum and stochastic automata

Abstract We analyze some features of the behaviour of quantum automata, providing analogies and differences with the corresponding stochastic models. In particular, we prove: • there is a quantum automaton where the change of state depends on unitary transformations defined by matrices with nonnull amplitudes that accepts a non regular language with cut point zero and inverse error polynomially bounded, • stochastic automata with matrices having nonnull elements and with polynomial bounds on the inverse error recognize only regular languages, • the class of stochastic languages contains the class of quantum languages, • quantum languages are empty or contain an infinite number of words, • the class of quantum languages is not closed under complementation.

[1]  Lov K. Grover,et al.  Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).

[2]  C. H. Bennett,et al.  Quantum Information and Computation , 1995 .

[3]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[4]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[5]  R. D. Wolf Quantum Computation and Shor's Factoring Algorithm , 1999 .

[6]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[8]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[9]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[10]  R. Feynman Quantum mechanical computers , 1986 .

[11]  S. Lloyd Envisioning a quantum supercomputer. , 1994, Science.

[12]  I PaulBenioff Quantum Mechanical Hamiltonian Models of Turing Machines , 1982 .

[13]  D E Koshland The career of scientific exploration. , 1993, Science.

[14]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[15]  R. Hughes,et al.  The Structure and Interpretation of Quantum Mechanics , 1989 .

[16]  Teich,et al.  Structural basis of multistationary quantum systems. II. Effective few-particle dynamics. , 1988, Physical review. B, Condensed matter.

[17]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[18]  Gilles Brassard,et al.  The quantum challenge to structural complexity theory , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[19]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[20]  Sleator,et al.  Realizable Universal Quantum Logic Gates. , 1995, Physical review letters.

[21]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[22]  Howard E. Brandt,et al.  Quantum computation and information : AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C. , 2002 .

[23]  S Lloyd,et al.  A Potentially Realizable Quantum Computer , 1993, Science.

[24]  D. W. Cohen,et al.  An Introduction to Hilbert Space and Quantum Logic , 1989 .

[25]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[26]  Gilles Brassard,et al.  Oracle Quantum Computing , 1994 .

[27]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[28]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[29]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[30]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[31]  R. A. Silverman,et al.  Introductory Real Analysis , 1972 .

[32]  Peter W. Shor,et al.  Algorithms for Quantum Computation: Discrete Log and Factoring (Extended Abstract) , 1994, FOCS 1994.

[33]  R. Feynman Simulating physics with computers , 1999 .

[34]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[35]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[36]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[37]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[38]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[39]  Chuang,et al.  Simple quantum computer. , 1995, Physical review. A, Atomic, molecular, and optical physics.