Extrapolation discontinuous Galerkin method for ultraparabolic equations

Ultraparabolic equations arise from the characterization of the performance index of stochastic optimal control relative to ultradiffusion processes; they evidence multiple temporal variables and may be regarded as parabolic along characteristic directions. We consider theoretical and approximation aspects of a temporally order and step size adaptive extrapolation discontinuous Galerkin method coupled with a spatial Lagrange second-order finite element approximation for a prototype ultraparabolic problem. As an application, we value a so-called Asian option from mathematical finance.

[1]  Xiao Lan Zhang,et al.  Numerical Analysis of American Option Pricing in a Jump-Diffusion Model , 1997, Math. Oper. Res..

[2]  S. Polidoro,et al.  Interior regularity for weak solutions of ultraparabolic equations in divergence form with discontinuous coefficients , 1998 .

[3]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[4]  S. Polidoro,et al.  Sobolev–Morrey spaces related to an ultraparabolic equation , 1998 .

[5]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[6]  S. A. Tersenov ON BOUNDARY VALUE PROBLEMS FOR A CLASS OF ULTRAPARABOLIC EQUATIONS, AND THEIR APPLICATIONS , 1988 .

[7]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[8]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[9]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[10]  Peter Deuflhard,et al.  Scientific Computing with Ordinary Differential Equations , 2002 .

[11]  E. Hairer,et al.  Solving Ordinary ,Differential Equations I, Nonstiff problems/E. Hairer, S. P. Norsett, G. Wanner, Second Revised Edition with 135 Figures, Vol.: 1 , 2000 .

[12]  Basic Boundary Value Problems for One Ultraparabolic Equation , 2001 .

[13]  Joseph E. Flaherty,et al.  A Posteriori Finite Element Error Estimation for Diffusion Problems , 1999, SIAM J. Sci. Comput..

[14]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[15]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[16]  M. Chipot Finite Element Methods for Elliptic Problems , 2000 .

[17]  Michael D. Marcozzi On the Valuation of Asian Options by Variational Methods , 2003, SIAM J. Sci. Comput..

[18]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[19]  A. Kolmogoroff,et al.  Zufallige Bewegungen (Zur Theorie der Brownschen Bewegung) , 1934 .

[20]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[21]  A. Kolmogoroff Zur Theorie der stetigen zufälligen Prozesse , 1933 .

[22]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[23]  Bernardo Cockburn,et al.  Quasimonotone Schemes for Scalar Conservation Laws. Part II , 1990 .

[24]  Vidar Thomée,et al.  Numerical methods for ultraparabolic equations , 1994 .

[25]  Karen Dragon Devine,et al.  A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems , 2002 .

[26]  Peter Deuflhard,et al.  Recent progress in extrapolation methods for ordinary differential equations , 1985 .

[27]  Michael D. Marcozzi,et al.  A numerical analysis of variational valuation techniques for derivative securities , 2004, Appl. Math. Comput..

[28]  V. S. Vladimirov,et al.  GENERALIZED CAUCHY PROBLEM FOR AN ULTRAPARABOLIC EQUATION , 1967 .