Application of the spectral‐element method to the axisymmetric Navier–Stokes equation

SUMMARY We present an application of the spectral-element method to model axisymmetric flows in rapidly rotating domains. The primitive equations are discretized in space with local tensorized bases of high-order polynomials and in time with a second-order accurate scheme that treats viscous and rotational effects implicitly. We handle the pole problem using a weighted quadrature in elements adjacent to the axis of rotation. The resulting algebraic systems are solved efficiently using preconditioned iterative procedures. We validate our implementation through comparisons with analytic and purely spectral solutions to laminar flows in a spherical shell. This axisymmetric tool is the kernel on which complexity will be added subsequently in the long-term prospect of building a parallel spectral-element based geodynamo model.

[1]  J. B. Perot,et al.  An analysis of the fractional step method , 1993 .

[2]  Paul H. Roberts,et al.  Rotation and Magnetism of Earth's Inner Core , 1996, Science.

[3]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[4]  Hans-Peter Bunge,et al.  Mantle convection modeling on parallel virtual machines , 1995 .

[5]  M. Gillan,et al.  The viscosity of liquid iron at the physical conditions of the Earth's core , 1998, Nature.

[6]  Paul H. Roberts,et al.  Magnetohydrodynamics of the Earth's Core , 1972 .

[7]  C. Jones,et al.  Influence of the Earth's inner core on geomagnetic fluctuations and reversals , 1993, Nature.

[8]  Jeremy Bloxham,et al.  Sensitivity of the geomagnetic axial dipole to thermal core–mantle interactions , 2000, Nature.

[9]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[10]  J. Bloxham Dynamics of Angular Momentum in the Earth's Core , 1998 .

[11]  Paul H. Roberts,et al.  A three-dimensional self-consistent computer simulation of a geomagnetic field reversal , 1995, Nature.

[12]  Jean-Pierre Vilotte,et al.  Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids , 2003 .

[13]  Francis X. Giraldo,et al.  A spectral element shallow water model on spherical geodesic grids , 2001 .

[14]  Walter H. F. Smith,et al.  Free software helps map and display data , 1991 .

[15]  A. Tilgner,et al.  Spectral methods for the simulation of incompressible flows in spherical shells , 1999 .

[16]  Anthony T. Patera,et al.  Analysis of Iterative Methods for the Steady and Unsteady Stokes Problem: Application to Spectral Element Discretizations , 1993, SIAM J. Sci. Comput..

[17]  Monique Dauge,et al.  Spectral Methods for Axisymmetric Domains , 1999 .

[18]  M. G. S. Pierre Solar and Planetary Dynamos: The Strong Field Branch of the Childress–Soward Dynamo , 1994 .

[19]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[20]  Dale B. Haidvogel,et al.  A nonconforming spectral element ocean model , 2000 .

[21]  J. Bloxham The effect of thermal core–mantle interactions on the palaeomagnetic secular variation , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  Rainer Hollerbach,et al.  A spectral solution of the magneto-convection equations in spherical geometry , 2000 .

[23]  W. Couzy,et al.  Spectral element discretization of the unsteady Navier-Stokes equations and its iterative solution on parallel computers , 1995 .

[24]  E. Dormy,et al.  Numerical models of the geodynamo and observational constraints , 2000 .

[25]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[26]  Ulrich R. Christensen,et al.  Numerical modelling of the geodynamo: a systematic parameter study , 1999 .

[27]  Jeremy Bloxham,et al.  An Earth-like numerical dynamo model , 1997, Nature.

[28]  A. J. Wathen,et al.  An analysis of some element-by-element techniques , 1989 .

[29]  Timothy Nigel Phillips,et al.  Spectral element methods for axisymmetric Stokes problems , 2000 .

[30]  Rainer Hollerbach Magnetohydrodynamic Ekman and Stewartson layers in a rotating spherical shell , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[31]  Einar M. Rønquist,et al.  An Operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow , 1990 .

[32]  I. Proudman The almost-rigid rotation of viscous fluid between concentric spheres , 1956, Journal of Fluid Mechanics.

[33]  P. Roberts,et al.  An anelastic evolutionary geodynamo simulation driven by compositional and thermal convection , 1996 .

[34]  Jeremy Bloxham,et al.  Numerical Modeling of Magnetohydrodynamic Convection in a Rapidly Rotating Spherical Shell , 1999 .

[35]  K. Stewartson,et al.  On almost rigid rotations , 1957, Journal of Fluid Mechanics.

[36]  Jean-Pierre Vilotte,et al.  Coupling the spectral element method with a modal solution for elastic wave propagation in global earth models , 2003 .

[37]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[38]  W. Couzy,et al.  A fast Schur complement method for the spectral element discretization of the incompressible Navier-Stokes equations , 1995 .

[39]  Keke Zhang,et al.  The effect of hyperviscosity on geodynamo models , 1997 .

[40]  Gary A. Glatzmaier,et al.  Numerical Simulations of Stellar Convective Dynamos. I. The Model and Method , 1984 .

[41]  Paul Fischer,et al.  An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier-Stokes Equations , 1997 .

[42]  D. Gubbins,et al.  Scale disparities and magnetohydrodynamics in the Earth's core , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  D. Jault,et al.  MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field , 1998 .

[44]  F. Busse Homogeneous Dynamos in Planetary Cores and in the Laboratory , 2000 .

[45]  M. Taylor The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .

[46]  Friedrich H. Busse,et al.  Effects of hyperdiffusivities on dynamo simulations , 2000 .

[47]  S. Orszag,et al.  Direct and Large-Eddy Simulation of the Flow Past a Sphere , 1993 .

[48]  Harvey P. Greenspan,et al.  The Theory of Rotating Fluids. By H. P. GREENSPAN. Cambridge University Press, 1968. 327 pp. £5.50. , 1972, Journal of Fluid Mechanics.

[49]  Jun Zou,et al.  A non-linear, 3-D spherical α2 dynamo using a finite element method , 2001 .

[50]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[51]  Jean-Paul Poirier,et al.  Transport properties of liquid metals and viscosity of the Earth's core , 1988 .

[52]  J. Tromp,et al.  Theoretical Global Seismology , 1998 .

[53]  J. Reddy An introduction to the finite element method , 1989 .

[54]  P. F. Fischer,et al.  An overlapping Schwarz method for spectral element simulation of three-dimensional incompressible flows , 1998 .

[55]  Yvon Maday,et al.  A COLLOCATION METHOD OVER STAGGERED GRIDS FOR THE STOKES PROBLEM , 1988 .

[56]  K. Stewartson On almost rigid rotations. Part 2 , 1966, Journal of Fluid Mechanics.

[57]  A. Patera,et al.  Spectral element methods for the incompressible Navier-Stokes equations , 1989 .