Support spinor machine

We generalize a support vector machine to a support spinor machine by using the mathematical structure of wedge product over vector machine in order to extend field from vector field to spinor field. The separated hyperplane is extended to Kolmogorov space in time series data which allow us to extend a structure of support vector machine to a support tensor machine and a support tensor machine moduli space. Our performance test on support spinor machine is done over one class classification of end point in physiology state of time series data after empirical mode analysis and compared with support vector machine test. We implement algorithm of support spinor machine by using Holo-Hilbert amplitude modulation for fully nonlinear and nonstationary time series data analysis.

[1]  R. Pinčák,et al.  From the currency rate quotations onto strings and brane world scenarios , 2011, 1104.4716.

[2]  Jon Atli Benediktsson,et al.  Support Tensor Machines for Classification of Hyperspectral Remote Sensing Imagery , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Kent D. Daniel,et al.  Presentation Slides for 'Investor Psychology and Security Market Under and Overreactions' , 1998 .

[4]  N. Huang,et al.  On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  Jitao Sun,et al.  Global exponential stability of Clifford-valued recurrent neural networks , 2016, Neurocomputing.

[6]  Review: Serge Lang, Diophantine geometry , 1964 .

[7]  Marek Bundzel,et al.  Experimental Analysis of the Prediction Model Based on String Invariants , 2014, Comput. Informatics.

[8]  George Sofianos,et al.  An empirical analysis of NYSE specialist trading , 1998 .

[9]  Masaki Kobayashi,et al.  Rotational invariance of quaternionic hopfield neural networks , 2016 .

[10]  Richard Pincak,et al.  With string model to time series forecasting , 2015 .

[11]  Gerald Sommer,et al.  On Clifford neurons and Clifford multi-layer perceptrons , 2008, Neural Networks.

[12]  Norden E. Huang,et al.  A review on Hilbert‐Huang transform: Method and its applications to geophysical studies , 2008 .

[13]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[14]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Stephen E. Wilcox Investor Psychology and Security Market Under- and Overreactions , 1999 .

[16]  R. Mantegna,et al.  Scaling behaviour in the dynamics of an economic index , 1995, Nature.

[17]  Ling Jing,et al.  Twin Bounded Support Tensor Machine for Classification , 2016, Int. J. Pattern Recognit. Artif. Intell..

[18]  Yuan-Hai Shao,et al.  Improvements on Twin Support Vector Machines , 2011, IEEE Transactions on Neural Networks.

[19]  W. Cao,et al.  Clifford Fuzzy Support Vector Machines for Classification , 2016 .

[20]  R. Pinčák,et al.  Kolmogorov space in time series data , 2016, 1606.03901.

[21]  R. Pinčák,et al.  Using String Invariants for Prediction Searching for Optimal Parameters , 2016, 1606.06003.

[22]  Calin-Adrian Popa Lie Algebra-Valued Hopfield Neural Networks , 2015, 2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC).

[23]  A. Loi,et al.  On the topology of the set of critical equilibria , 2016 .

[24]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[25]  Yanyan Chen,et al.  One-Class Support Tensor Machine , 2016, Knowl. Based Syst..

[26]  Erik Barto vs,et al.  With string model to time series forecasting , 2015 .

[27]  E. R. Phillips Karl M. Peterson: The earliest derivation of the Mainardi-Codazzi equations and the fundamental theorem of surface theory , 1979 .

[28]  Anna Mikusheva,et al.  A Geometric Approach to Nonlinear Econometric Models , 2016 .

[29]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[30]  Vladimir Vapnik Learning hidden information: SVM+ , 2006, 2006 IEEE International Conference on Granular Computing.

[31]  Richard Pincak,et al.  The string prediction models as invariants of time series in the forex market , 2011, 1109.0435.

[32]  V. Plerou,et al.  Scaling of the distribution of fluctuations of financial market indices. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  A. Papadopoulos,et al.  Historical development of Teichmüller theory , 2013 .

[34]  W. Massey A basic course in algebraic topology , 1991 .

[35]  D. Alpay,et al.  Kolmogorov’s Axioms for Probabilities with Values in Hyperbolic Numbers , 2015, 1508.01350.

[36]  R. Pinčák,et al.  The study of Thai stock market across the 2008 financial crisis , 2016, 1606.02871.

[37]  P. F. Verdes,et al.  Nonstationary time-series analysis: accurate reconstruction of driving forces. , 2001, Physical review letters.

[38]  Hainan Zhang Topology of fiber bundles , 2014 .

[39]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[40]  Rama Cont,et al.  Service de Physique de l’État Condensé, Centre d’études de Saclay , 1997 .

[41]  Reshma Khemchandani,et al.  Improvements on ν-Twin Support Vector Machine , 2016, Neural Networks.

[42]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[43]  Pablo M. Granitto,et al.  Nonstationary regression with support vector machines , 2014, Neural Computing and Applications.