Adaptive finite-time control for hyperchaotic Lorenz–Stenflo systems

This paper investigates the issue of adaptive finite-time control for hyperchaotic Lorenz–Stenflo systems with parameter uncertainties. Based on finite-time Lyapunov theory, a class of non-smooth adaptive finite time controllers is given to guarantee the adaptive finite-time stability and make the states of the systems converge to the origins within a finite-time. Finally, illustrative examples are presented to verify the effectiveness of the proposed adaptive finite-time controller.

[1]  Sahjendra N. Singh,et al.  Adaptive Control of Chaos in Lorenz System , 1997 .

[2]  Zhong-Ping Jiang,et al.  Finite-Time Input-to-State Stability and Applications to Finite-Time Control Design , 2010, SIAM J. Control. Optim..

[3]  赵辉,et al.  Controlling chaos in power system based on finite-time stability theory , 2011 .

[4]  H. Yau,et al.  Chaos control of Lorenz systems using adaptive controller with input saturation , 2007 .

[5]  Furong Gao,et al.  Adaptive control of chaotic continuous-time systems with delay , 1998 .

[6]  M. P. Aghababa,et al.  Finite-time stabilization of uncertain non-autonomous chaotic gyroscopes with nonlinear inputs , 2012 .

[7]  Jun Wang,et al.  A New Type of Adaptive Controller Research on the Parameters of Chaos System , 2009, 2009 Third International Conference on Genetic and Evolutionary Computing.

[8]  M. P. Aghababa,et al.  Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique , 2011 .

[9]  B. H. Wang,et al.  Robust adaptive dynamic surface control of chaos in permanent magnet synchronous motor , 2007 .

[10]  Hongyi Li,et al.  Adaptive Control of Uncertain Nonholonomic Systems in Finite Time , 2009, Kybernetika.

[11]  Dennis S. Bernstein,et al.  Finite-Time Stability of Continuous Autonomous Systems , 2000, SIAM J. Control. Optim..

[12]  Zhaojun Meng,et al.  Chaos anti-control of permanent magnet synchronous motor based on model matching , 2007, 2007 International Conference on Electrical Machines and Systems (ICEMS).

[13]  Lennart Stenflo,et al.  Generalized Lorenz equations for acoustic-gravity waves in the atmosphere , 1996 .

[14]  Mohammad Pourmahmood Aghababa,et al.  Chaos suppression of rotational machine systems via finite-time control method , 2012 .

[15]  Yu-Ping Tian,et al.  Finite time synchronization of chaotic systems , 2003 .

[16]  Shihua Li,et al.  Stability analysis for a second-order continuous finite-time control system subject to a disturbance , 2009 .

[17]  Lixin Tian,et al.  Feedback control and adaptive control of the energy resource chaotic system , 2007 .

[18]  B. P. Antonyuk,et al.  Positive Feedback in Response to Static Electric Field in Glasses under Light Pumping , 1998 .

[19]  Hua Wang,et al.  Finite time chaos control for a class of chaotic systems with input nonlinearities via TSM scheme , 2012 .

[20]  L. Bushnell,et al.  Adaptive finite-time control of nonlinear systems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[21]  Xiangqing Chen,et al.  Adaptive finite-time control of chaos in permanent magnet synchronous motor with uncertain parameters , 2014 .

[22]  Mohammad Ataei,et al.  Control of chaos in permanent magnet synchronous motor by using optimal Lyapunov exponents placement , 2010 .

[23]  Daizhan Cheng,et al.  Adaptive finite time stabilization for a class of nonlinear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[24]  Guanrong Chen,et al.  Complex dynamics in a permanent-magnet synchronous motor model , 2004 .

[25]  F. Yuan,et al.  Further Result on Finite-Time Stabilization of Stochastic Nonholonomic Systems , 2013 .

[26]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[27]  Liang Du,et al.  Finite-time stability for time-varying nonlinear dynamical systems , 2008, 2008 American Control Conference.

[28]  Guoshan Zhang,et al.  Finite-time consensus problem for multiple non-holonomic mobile agents , 2012, Proceedings of the 10th World Congress on Intelligent Control and Automation.