Tuning of Magnetic Damping in Y3Fe5O12/Metal Bilayers for Spin-Wave Conduit Termination

In this work, we investigate the structural and dynamic magnetic properties of yttrium iron garnet (YIG) films grown onto gadolinium gallium garnet (GGG) substrates with thin platinum, iridium, and gold spacer layers. Separation of the YIG film from the GGG substrate by a metal film strongly affects the crystalline structure of YIG and its magnetic damping. Despite the presence of structural defects, however, the YIG films exhibit a clear ferromagnetic resonance response. The ability to tune the magnetic damping without substantial changes to magnetization offers attractive prospects for the design of complex spin-wave conduits. We show that the insertion of a 1-nm-thick metal layer between YIG and GGG already increases the effective damping parameter enough to efficiently absorb spin waves. This bilayer structure can therefore be utilized for magnonic waveguide termination. Investigating the dispersionless propagation of spin-wave packets, we demonstrate that a damping unit consisting of the YIG/metal bilayers can dissipate incident spin-wave signals with reflection coefficient R < 0.1 at a distance comparable to the spatial width of the wave packet.

[1]  Y. Jo,et al.  Deposition of Crystalline GdIG Samples Using Metal Organic Decomposition Method , 2022, Magnetochemistry.

[2]  J. Qin,et al.  Dysprosium Substituted Ce:YIG Thin Films for Temperature Insensitive Integrated Optical Isolator Applications , 2022, Materials.

[3]  A. Suchocki,et al.  Investigation of the Interface of Y3Fe5O12/Gd3Ga5O12 Structure Obtained by the Liquid Phase Epitaxy , 2022, Crystal Research and Technology.

[4]  T. Itaya,et al.  Properties of Magnetic Garnet Films for Flexible Magneto-Optical Indicators Fabricated by Spin-Coating Method , 2022, Materials.

[5]  Huaiwu Zhang,et al.  Magnetization dynamics in the YIG/Au/YIG magnon valve , 2022, APL Materials.

[6]  C. N. Lau,et al.  Enhancing Perpendicular Magnetic Anisotropy in Garnet Ferrimagnet by Interfacing with Few-Layer WTe2. , 2022, Nano letters.

[7]  A. Ullrich,et al.  Stress-Induced Magnetic Properties of Gadolinium Iron Garnet Nanoscale-Thin Films: Implications for Spintronic Devices , 2022, ACS Applied Nano Materials.

[8]  M. Popov,et al.  Fast long-wavelength exchange spin waves in partially compensated Ga:YIG , 2021, Applied Physics Letters.

[9]  F. Yildiz,et al.  Spin wave modes observation in YIG thin films with perpendicular magnetic anisotropy , 2021 .

[10]  V. Kruglyak Chiral magnonic resonators: Rediscovering the basic magnetic chirality in magnonics , 2021, Applied Physics Letters.

[11]  L. Bi,et al.  Silicon-Based All-Dielectric Metasurface on an Iron Garnet Film for Efficient Magneto-Optical Light Modulation in Near IR Range , 2021, Nanomaterials.

[12]  V. Demidov,et al.  Efficient geometrical control of spin waves in microscopic YIG waveguides , 2021, Applied Physics Letters.

[13]  B. Kuanr,et al.  Control of magnetization dynamics by substrate orientation in YIG thin films , 2021, 2109.05901.

[14]  Filipe Vaz,et al.  Directional Field-Dependence of Magnetoimpedance Effect on Integrated YIG/Pt-Stripline System , 2021, Sensors.

[15]  A. Chumak,et al.  Spin-Wave Dispersion Measurement by Variable-Gap Propagating Spin-Wave Spectroscopy , 2021, Physical Review Applied.

[16]  A. Serga,et al.  Advances in coherent magnonics , 2021, Nature Reviews Materials.

[17]  E. Coy,et al.  Effect of strain-induced anisotropy on magnetization dynamics in Y3Fe5O12 films recrystallized on a lattice-mismatched substrate , 2021, Scientific Reports.

[18]  Yunshan Cao,et al.  Magnetic Skyrmion Generation by Reflective Spin Wave Focusing , 2021, Frontiers in Physics.

[19]  Y. Blanter,et al.  Imaging Spin‐Wave Damping Underneath Metals Using Electron Spins in Diamond , 2021, Advanced Quantum Technologies.

[20]  Huaiwu Zhang,et al.  Comparison of the magnetic properties of bismuth substituted thulium iron garnet and yttrium iron garnet films , 2021 .

[21]  Jilei Chen,et al.  Magnonics Based on Thin-Film Iron Garnets , 2021, Journal of the Physical Society of Japan.

[22]  S. van Dijken,et al.  Nanoscale magnonic Fabry-Pérot resonator for low-loss spin-wave manipulation , 2021, Nature Communications.

[23]  L. Deng,et al.  Recent advances in development of magnetic garnet thin films for applications in spintronics and photonics , 2021 .

[24]  A. Sadovnikov,et al.  Spin waves transport in 3D magnonic waveguides , 2021 .

[25]  Dmitri E. Nikonov,et al.  The 2021 Magnonics Roadmap , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  L. Álvarez-Prado Control of Dynamics in Weak PMA Magnets , 2021, Magnetochemistry.

[27]  Ming Liu,et al.  Voltage tunable low damping YIG/PMN-PT multiferroic heterostructure for low-power RF/microwave devices , 2020 .

[28]  M. Kostylev,et al.  Spin-Wave Relaxation by Eddy Currents in Y3Fe5O12/Pt Bilayers and a Way to Suppress It , 2020 .

[29]  Sucheta Mondal,et al.  Magnetization dynamics of nanoscale magnetic materials: A perspective , 2020, 2008.05819.

[30]  Huaiwu Zhang,et al.  The submicron garnet film with perpendicular magnetic anisotropy prepared by liquid phase epitaxy method , 2020 .

[31]  Xiaohong Xu,et al.  Nanometer-Thick Yttrium Iron Garnet Films with Perpendicular Anisotropy and Low Damping , 2020 .

[32]  C. Adelmann,et al.  Introduction to spin wave computing , 2020, Journal of Applied Physics.

[33]  E. Papaioannou,et al.  Ultra Thin Films of Yttrium Iron Garnet with Very Low Damping: A Review , 2020, physica status solidi (b).

[34]  Huaiwu Zhang,et al.  Spin pumping and laser modulated inverse spin Hall effect in yttrium iron garnet/germanium heterojunctions , 2020 .

[35]  M. Golebiewski,et al.  Spin-wave Talbot effect in a thin ferromagnetic film , 2020, Physical Review B.

[36]  Gang Wang,et al.  Magnetic properties of a Y3Fe5O12/(TmBi)3(FeGa)5O12 heterostructure related to strain-induced magnetic anisotropy , 2020 .

[37]  D. Lacour,et al.  Electrical spectroscopy of forward volume spin waves in perpendicularly magnetized materials , 2020, 2001.11483.

[38]  P. Graczyk,et al.  Non-Negligible Imaginary Part of the Spin-Mixing Conductance and its Impact on Magnetization Dynamics in Heavy-Metal–Ferromagnet Bilayers , 2018, Physical Review Applied.

[39]  S. Dijken,et al.  Propagating spin waves in nanometer-thick yttrium iron garnet films: Dependence on wave vector, magnetic field strength, and angle , 2018, Physical Review B.

[40]  J. Ketterson,et al.  Propagation of magnetostatic spin waves in an yttrium iron garnet film for out-of-plane magnetic fields , 2018, Journal of Magnetism and Magnetic Materials.

[41]  Weisheng Zhao,et al.  Spin wave propagation detected over 100μm in half-metallic Heusler alloy Co2MnSi , 2018 .

[42]  L. E. Coy,et al.  Ultra-low damping in lift-off structured yttrium iron garnet thin films , 2017, 1902.04605.

[43]  H. Fangohr,et al.  Absorbing boundary layers for spin wave micromagnetics , 2017, 1706.03325.

[44]  S. Jurga,et al.  Characterization of spin wave propagation in (1 1 1) YIG thin films with large anisotropy , 2017, 1902.04608.

[45]  V. Cros,et al.  Spin-wave propagation in ultra-thin YIG based waveguides , 2016, 1610.08756.

[46]  Hiroyuki Takagi,et al.  Demonstration of a robust magnonic spin wave interferometer , 2016, Scientific Reports.

[47]  M. Schwartz Encyclopedia and Handbook of Materials, Parts and Finishes , 2016 .

[48]  G. Schmidt,et al.  Yttrium Iron Garnet Thin Films with Very Low Damping Obtained by Recrystallization of Amorphous Material , 2016, Scientific Reports.

[49]  P. Giri,et al.  Surface roughening and scaling behavior of vacuum-deposited SnCl2Pc organic thin films on different substrates , 2015 .

[50]  A. Kent,et al.  Eddy current interactions in a Ferromagnet-Normal metal bilayer structure, and its impact on ferromagnetic resonance lineshapes , 2014, 1412.1385.

[51]  P. Bortolotti,et al.  Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics , 2014, Scientific Reports.

[52]  Fengyuan Yang,et al.  Y3Fe5O12 spin pumping for quantitative understanding of pure spin transport and spin Hall effect in a broad range of materials (invited) , 2014, 1410.1597.

[53]  Andrii V. Chumak,et al.  Measurements of the exchange stiffness of YIG films using broadband ferromagnetic resonance techniques , 2014, 1408.5772.

[54]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[55]  Huaiwu Zhang,et al.  Tuning of the spin pumping in yttrium iron garnet/Au bilayer system by fast thermal treatment , 2014 .

[56]  Fengyuan Yang,et al.  Large spin pumping from epitaxial Y 3 Fe 5 O 12 thin films to Pt and W layers , 2013, 1307.1172.

[57]  Ruisheng Liang,et al.  Measurement of thermal expansion coefficient of substrate GGG and its epitaxial layer YIG , 1999, Powder Diffraction.

[58]  A. Yoshiasa,et al.  Site preference of cations and structural variation in Y3Fe5−xGaxO12 (0 ≤ x ≤ 5) solid solutions with garnet structure , 1995 .

[59]  A. Slavin,et al.  Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions , 1986 .

[60]  E. Coy,et al.  Magnetization Damping in Nanocrystalline Yttrium Iron Garnet Thin Films Grown on Oxidized Silicon , 2021, IEEE Magnetics Letters.

[61]  Mingzhong Wu,et al.  Sputtering Growth of Low-Damping Yttrium-Iron-Garnet Thin Films , 2020, IEEE Magnetics Letters.

[62]  C. A. Brookes,et al.  The Tensile Properties of Iridium at High Temperatures , 2005 .

[63]  W. H. Boyes,et al.  Instrumentation reference book , 2003 .