, Seong Man following Virus Entry Protein L 1 from the L 2 / DNA Complex Human Papillomavirus Type 16 Capsid Cyclophilins Facilitate Dissociation of the

[1]  Brent J. Ryckman,et al.  Virus Entry by Endocytosis , 2013, Advances in virology.

[2]  Mario Schelhaas,et al.  Entry of Human Papillomavirus Type 16 by Actin-Dependent, Clathrin- and Lipid Raft-Independent Endocytosis , 2012, PLoS pathogens.

[3]  L. Banks,et al.  Human Papillomavirus L2 Facilitates Viral Escape from Late Endosomes via Sorting Nexin 17 , 2012, Traffic : the International Journal of Intracellular Transport.

[4]  Martin J. Deymier,et al.  Opposing Effects of Bacitracin on Human Papillomavirus Type 16 Infection: Enhancement of Binding and Entry and Inhibition of Endosomal Penetration , 2012, Journal of Virology.

[5]  H. Korswagen,et al.  Sorting nexins provide diversity for retromer-dependent trafficking events , 2011, Nature Cell Biology.

[6]  A. Helenius,et al.  BAP31 and BiP are essential for dislocation of SV40 from the endoplasmic reticulum to the cytosol , 2011, Nature Cell Biology.

[7]  Ari Helenius,et al.  Endosome maturation , 2011, The EMBO journal.

[8]  A. Lipovsky,et al.  BiP and Multiple DNAJ Molecular Chaperones in the Endoplasmic Reticulum Are Required for Efficient Simian Virus 40 Infection , 2011, mBio.

[9]  P. Gallay,et al.  Cyclophilin A Interacts with Domain II of Hepatitis C Virus NS5A and Stimulates RNA Binding in an Isomerase-Dependent Manner , 2011, Journal of Virology.

[10]  Billy Tsai,et al.  A Large and Intact Viral Particle Penetrates the Endoplasmic Reticulum Membrane to Reach the Cytosol , 2011, PLoS pathogens.

[11]  F. Penin,et al.  Domain 3 of NS5A Protein from the Hepatitis C Virus Has Intrinsic α-Helical Propensity and Is a Substrate of Cyclophilin A* , 2011, The Journal of Biological Chemistry.

[12]  Gilles A. Spoden,et al.  Identification of the dynein light chains required for human papillomavirus infection , 2011, Cellular microbiology.

[13]  D. Spillmann,et al.  Structural Basis of Oligosaccharide Receptor Recognition by Human Papillomavirus* , 2010, The Journal of Biological Chemistry.

[14]  Y. Ishii,et al.  Inhibition of nuclear entry of HPV16 pseudovirus-packaged DNA by an anti-HPV16 L2 neutralizing antibody. , 2010, Virology.

[15]  Mario Schelhaas Come in and take your coat off – how host cells provide endocytosis for virus entry , 2010, Cellular microbiology.

[16]  R. Roden,et al.  Papillomavirus Infection Requires γ Secretase , 2010, Journal of Virology.

[17]  Naoki Kishimoto,et al.  Uncoating of Human Immunodeficiency Virus Type 1 Requires Prolyl Isomerase Pin1* , 2010, The Journal of Biological Chemistry.

[18]  M. Sapp,et al.  Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus , 2009, The FEBS journal.

[19]  M. Sapp,et al.  Target Cell Cyclophilins Facilitate Human Papillomavirus Type 16 Infection , 2009, PLoS pathogens.

[20]  S. Lank,et al.  Establishment of Human Papillomavirus Infection Requires Cell Cycle Progression , 2009, PLoS pathogens.

[21]  D. Lowy,et al.  Role of Heparan Sulfate in Attachment to and Infection of the Murine Female Genital Tract by Human Papillomavirus , 2008, Journal of Virology.

[22]  Gilles A. Spoden,et al.  Clathrin- and Caveolin-Independent Entry of Human Papillomavirus Type 16—Involvement of Tetraspanin-Enriched Microdomains (TEMs) , 2008, PloS one.

[23]  A. Wandinger-Ness,et al.  Caveolin-1-Dependent Infectious Entry of Human Papillomavirus Type 31 in Human Keratinocytes Proceeds to the Endosomal Pathway for pH-Dependent Uncoating , 2008, Journal of Virology.

[24]  B. Trus,et al.  Arrangement of L2 within the Papillomavirus Capsid , 2008, Journal of Virology.

[25]  D. Lowy,et al.  Mechanisms of Human Papillomavirus Type 16 Neutralization by L2 Cross-Neutralizing and L1 Type-Specific Antibodies , 2008, Journal of Virology.

[26]  I. Bossis,et al.  A Protective and Broadly Cross-Neutralizing Epitope of Human Papillomavirus L2 , 2007, Journal of Virology.

[27]  H. Selinka,et al.  Surface-exposed Amino Acid Residues of HPV16 L1 Protein Mediating Interaction with Cell Surface Heparan Sulfate* , 2007, Journal of Biological Chemistry.

[28]  R. Crystal,et al.  Intracellular trafficking of adenovirus: many means to many ends. , 2007, Advanced drug delivery reviews.

[29]  H. Selinka,et al.  Inhibition of Transfer to Secondary Receptors by Heparan Sulfate-Binding Drug or Antibody Induces Noninfectious Uptake of Human Papillomavirus , 2007, Journal of Virology.

[30]  E. Mocarski,et al.  Cyclosporine Inhibits Mouse Cytomegalovirus Infection via a Cyclophilin-Dependent Pathway Specifically in Neural Stem/Progenitor Cells , 2007, Journal of Virology.

[31]  J. Luban Cyclophilin A, TRIM5, and Resistance to Human Immunodeficiency Virus Type 1 Infection , 2006, Journal of Virology.

[32]  Luise Florin,et al.  Identification of a Dynein Interacting Domain in the Papillomavirus Minor Capsid Protein L2 , 2006, Journal of Virology.

[33]  B. Berk,et al.  Cyclophilin A Is Secreted by a Vesicular Pathway in Vascular Smooth Muscle Cells , 2006, Circulation research.

[34]  N. Christensen,et al.  Human papillomaviruses bind a basal extracellular matrix component secreted by keratinocytes which is distinct from a membrane-associated receptor. , 2006, Virology.

[35]  D. Lowy,et al.  Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Schiller,et al.  A Membrane-Destabilizing Peptide in Capsid Protein L2 Is Required for Egress of Papillomavirus Genomes from Endosomes , 2006, Journal of Virology.

[37]  M. Baryshev,et al.  ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding. , 2005, Molecular cell.

[38]  K. Shimotohno,et al.  Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. , 2005, Molecular cell.

[39]  G. Nemerow,et al.  Adenovirus Protein VI Mediates Membrane Disruption following Capsid Disassembly , 2005, Journal of Virology.

[40]  J. Dillner,et al.  Heparan sulfate proteoglycans interact exclusively with conformationally intact HPV L1 assemblies: Basis for a virus‐like particle ELISA , 2005, Journal of medical virology.

[41]  D. Lowy,et al.  Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[42]  H. Sirma,et al.  Nuclear Translocation of Papillomavirus Minor Capsid Protein L2 Requires Hsc70 , 2004, Journal of Virology.

[43]  D. Lowy,et al.  Efficient Intracellular Assembly of Papillomaviral Vectors , 2004, Journal of Virology.

[44]  H. Selinka,et al.  Further Evidence that Papillomavirus Capsids Exist inTwo DistinctConformations , 2003, Journal of Virology.

[45]  R. Garcea,et al.  Interactions between Papillomavirus L1 and L2 Capsid Proteins , 2003, Journal of Virology.

[46]  R. Roden,et al.  Cell Surface-Binding Motifs of L2 That Facilitate Papillomavirus Infection , 2003, Journal of Virology.

[47]  D. Lowy,et al.  Papillomaviruses infect cells via a clathrin-dependent pathway. , 2003, Virology.

[48]  H. Selinka,et al.  Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions. , 2002, Virology.

[49]  J. Kleinschmidt,et al.  Enhancement of Capsid Gene Expression: Preparing the Human Papillomavirus Type 16 Major Structural Gene L1 for DNA Vaccination Purposes , 2001, Journal of Virology.

[50]  D. Lowy,et al.  L1 Interaction Domains of Papillomavirus L2 Necessary for Viral Genome Encapsidation , 2001, Journal of Virology.

[51]  Luise Florin,et al.  Human Papillomavirus Infection Requires Cell Surface Heparan Sulfate , 2001, Journal of Virology.

[52]  U. Greber,et al.  The First Step of Adenovirus Type 2 Disassembly Occurs at the Cell Surface, Independently of Endocytosis and Escape to the Cytosol , 2000, Journal of Virology.

[53]  D. Lowy,et al.  Minor capsid protein of human genital papillomaviruses contains subdominant, cross-neutralizing epitopes. , 2000, Virology.

[54]  S. Harrison,et al.  Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. , 2000, Molecular cell.

[55]  B. Haendler,et al.  Two Distinct Regions of Cyclophilin B Are Involved in the Recognition of a Functional Receptor and of Glycosaminoglycans on T Lymphocytes* , 1999, The Journal of Biological Chemistry.

[56]  K. Jansen,et al.  The L1 Major Capsid Protein of Human Papillomavirus Type 11 Recombinant Virus-like Particles Interacts with Heparin and Cell-surface Glycosaminoglycans on Human Keratinocytes* , 1999, The Journal of Biological Chemistry.

[57]  J. Harris,et al.  Papillomavirus Assembly Requires Trimerization of the Major Capsid Protein by Disulfides between Two Highly Conserved Cysteines , 1998, Journal of Virology.

[58]  S. Harrison,et al.  Interaction of polyomavirus internal protein VP2 with the major capsid protein VP1 and implications for participation of VP2 in viral entry , 1998, The EMBO journal.

[59]  Robert L. Garcea,et al.  Intercapsomeric Disulfide Bonds in Papillomavirus Assembly and Disassembly , 1998, Journal of Virology.

[60]  W. Liu,et al.  Sequence close to the N-terminus of L2 protein is displayed on the surface of bovine papillomavirus type 1 virions. , 1997, Virology.

[61]  M. Sapp,et al.  Conformational and linear epitopes on virus-like particles of human papillomavirus type 33 identified by monoclonal antibodies to the minor capsid protein L2. , 1995, The Journal of general virology.

[62]  M. Sapp,et al.  Organization of the major and minor capsid proteins in human papillomavirus type 33 virus-like particles. , 1995, The Journal of general virology.

[63]  N. Christensen,et al.  Postattachment neutralization of papillomaviruses by monoclonal and polyclonal antibodies. , 1995, Virology.

[64]  J. Walboomers,et al.  Analysis of type-restricted and cross-reactive epitopes on virus-like particles of human papillomavirus type 33 and in infected tissues using monoclonal antibodies to the major capsid protein. , 1994, The Journal of general virology.

[65]  Ari Helenius,et al.  Stepwise dismantling of adenovirus 2 during entry into cells , 1993, Cell.

[66]  Jeremy Luban,et al.  Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B , 1993, Cell.

[67]  T. Baker,et al.  Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. , 1991, Biophysical journal.

[68]  T. Kiefhaber,et al.  Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins , 1989, Nature.

[69]  D. Speicher,et al.  Isolation and amino acid sequence of cyclophilin. , 1986, The Journal of biological chemistry.