The Effect of Electrode Thickness and Electrode/Electrolyte Interface on the Capacitive Deionization Behavior of the Mxene Electrodes

[1]  V. Presser,et al.  Particle size distribution influence on capacitive deionization: Insights for electrode preparation , 2022, Desalination.

[2]  Junjie Shen,et al.  Capacitive Removal of Fluoride Ions via Creating Multiple Capture Sites in a Modulatory Heterostructure. , 2021, Environmental science & technology.

[3]  Junjie Shen,et al.  Selective Capacitive Removal of Heavy Metal Ions from Wastewater over Lewis Base Sites of S-Doped Fe-N-C Cathodes via an Electro-Adsorption Process. , 2021, Environmental science & technology.

[4]  Dingfei Deng,et al.  Importance of Anode/Cathode Mass Loadings on Capacitive Deionization Performance , 2021 .

[5]  Liyi Shi,et al.  Enhanced water purification via redox interfaces created by an atomic layer deposition strategy , 2021 .

[6]  K. Liao,et al.  2D Ti3C2Tx MXene nanosheets coated cellulose fibers based 3D nanostructures for efficient water desalination , 2021 .

[7]  Junjie Shen,et al.  Beneficial synergy of adsorption–intercalation–conversion mechanisms in Nb2O5@nitrogen-doped carbon frameworks for promoted removal of metal ions via hybrid capacitive deionization , 2021, Environmental Science: Nano.

[8]  L. A. Ruotolo,et al.  Insights on the role of interparticle porosity and electrode thickness on capacitive deionization performance for desalination , 2020 .

[9]  Yuan Li,et al.  Free-standing 3D alkalized Ti3C2Tx/Ti3C2Tx nanosheet membrane electrode for highly efficient and stable desalination in hybrid capacitive deionization , 2020 .

[10]  V. Presser,et al.  Combining Battery‐Type and Pseudocapacitive Charge Storage in Ag/Ti3C2Tx MXene Electrode for Capturing Chloride Ions with High Capacitance and Fast Ion Transport , 2020, Advanced science.

[11]  Y. Gogotsi,et al.  Rational Design of Titanium Carbide MXene Electrode Architectures for Hybrid Capacitive Deionization , 2020, ENERGY & ENVIRONMENTAL MATERIALS.

[12]  V. Presser,et al.  MXene/activated carbon hybrid capacitive deionization for permselective ion removal at low and high salinity. , 2020, ACS applied materials & interfaces.

[13]  L. Wang,et al.  Free-standing Ti3C2Tx MXene film as binder-free electrode in capacitive deionization with an ultrahigh desalination capacity , 2020 .

[14]  Jie Ma,et al.  An All-MXene-Based Integrated Membrane Electrode Constructed using Ti3C2Tx as an Intercalating Agent for High Performance Desalination. , 2020, Environmental science & technology.

[15]  Bingbing Chen,et al.  MXene as a Cation-selective Cathode Material for Asymmetric Capacitive Deionization. , 2020, ACS applied materials & interfaces.

[16]  Y. Gogotsi,et al.  Influence of operating conditions on the desalination performance of a symmetric pre-conditioned Ti3C2T -MXene membrane capacitive deionization system , 2020 .

[17]  M. Naraghi,et al.  Porous nitrogen-doped MXene-based electrodes for capacitive deionization , 2020 .

[18]  Kai Han,et al.  Ultra-lightweight Ti3C2T MXene modified separator for Li–S batteries: Thickness regulation enabled polysulfide inhibition and lithium ion transportation , 2020 .

[19]  Haibo Li,et al.  Elucidating the capacitive desalination behavior of NaxCoO2: the significance of electrochemical pre-activation. , 2020, Nanoscale.

[20]  Haibo Li,et al.  The feasibility of hollow echinus-like NiCo2O4 nanocrystals for hybrid capacitive deionization , 2020 .

[21]  K. Zhou,et al.  Carbon–metal compound composite electrodes for capacitive deionization: synthesis, development and applications , 2019, Journal of Materials Chemistry A.

[22]  Jie Ma,et al.  Ionically cross-linked sodium alginate/ĸ-carrageenan double-network gel beads with low-swelling, enhanced mechanical properties, and excellent adsorption performance , 2019, Chemical Engineering Journal.

[23]  Liyi Shi,et al.  Creating Sandwich-like Ti3C2/TiO2/rGO as Anode Materials with High Energy and Power Density for Li-Ion Hybrid Capacitors , 2019, ACS Sustainable Chemistry & Engineering.

[24]  Haibo Li,et al.  Pseudo-capacitive behavior induced dual-ion hybrid deionization system based on Ag@rGO‖Na1.1V3O7.9@rGO , 2019, Journal of Materials Chemistry A.

[25]  Ying Wang,et al.  Faradaic reactions in capacitive deionization for desalination and ion separation , 2019, Journal of Materials Chemistry A.

[26]  Tao Yang,et al.  Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination , 2019, Chemical Engineering Journal.

[27]  K. B. Siah,et al.  Electrodialysis reversal for industrial reverse osmosis brine treatment , 2019, Separation and Purification Technology.

[28]  E. Giannelis,et al.  Role of Mesopore Structure of Hierarchical Porous Carbons on the Electrosorption Performance of Capacitive Deionization Electrodes , 2019, ACS Sustainable Chemistry & Engineering.

[29]  Gong Cheng,et al.  Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization , 2019, Chemical Engineering Journal.

[30]  Yusuke Yamauchi,et al.  Extraordinary capacitive deionization performance of highly-ordered mesoporous carbon nano-polyhedra for brackish water desalination , 2019, Environmental Science: Nano.

[31]  Tie Gao,et al.  Robust synthesis of carbon@Na4Ti9O20 core-shell nanotubes for hybrid capacitive deionization with enhanced performance , 2019, Desalination.

[32]  Li-xin Song,et al.  Comparative study on electrosorptive behavior of NH4HF2-etched Ti3C2 and HF-etched Ti3C2 for capacitive deionization , 2018, Ionics.

[33]  S. Liao,et al.  Formation of a Tubular Assembly by Ultrathin Ti0.8Co0.2N Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Hydrogen–/Metal–Air Fuel Cells , 2018, ACS Catalysis.

[34]  Y. Gogotsi,et al.  Porous Cryo-Dried MXene for Efficient Capacitive Deionization , 2018 .

[35]  Zhiyu Wang,et al.  MXene-Based Electrode with Enhanced Pseudocapacitance and Volumetric Capacity for Power-Type and Ultra-Long Life Lithium Storage. , 2018, ACS nano.

[36]  P. Webley,et al.  A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization. , 2018, Water research.

[37]  H. Yang,et al.  Ar plasma modification of 2D MXene Ti3C2Tx nanosheets for efficient capacitive desalination , 2018 .

[38]  V. Presser,et al.  Two-Dimensional Molybdenum Carbide (MXene) with Divacancy Ordering for Brackish and Seawater Desalination via Cation and Anion Intercalation , 2018 .

[39]  Q. Shao,et al.  Assessment of the impact of climate change on flow regime at multiple temporal scales and potential ecological implications in an alpine river , 2018, Stochastic Environmental Research and Risk Assessment.

[40]  Yury Gogotsi,et al.  Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) , 2017 .

[41]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[42]  Feiyu Kang,et al.  Carbon electrodes for capacitive deionization , 2017 .

[43]  V. Presser,et al.  MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization , 2016 .

[44]  Kevin M. Cook,et al.  X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) , 2016 .

[45]  B. T. Chew,et al.  Microwave-Assisted Synthesis of Highly-Crumpled, Few-Layered Graphene and Nitrogen-Doped Graphene for Use as High-Performance Electrodes in Capacitive Deionization , 2015, Scientific Reports.

[46]  T. Pradeep,et al.  Cellulose Derived Graphenic Fibers for Capacitive Desalination of Brackish Water. , 2015, ACS applied materials & interfaces.

[47]  Ibrahim S. Al-Mutaz,et al.  Comparative performance evaluation of conventional multi-effect evaporation desalination processes , 2014 .

[48]  F. Kang,et al.  Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization , 2014 .

[49]  Ke-ning Sun,et al.  Sponge‐Templated Preparation of High Surface Area Graphene with Ultrahigh Capacitive Deionization Performance , 2014 .

[50]  Harry Bruning,et al.  Seawater predesalination with electrodialysis , 2014 .

[51]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[52]  Martin Z. Bazant,et al.  Water Purification by Shock Electrodialysis: Deionization, Filtration, Separation, and Disinfection , 2014, 1402.0058.

[53]  Volker Presser,et al.  Review on the science and technology of water desalination by capacitive deionization , 2013 .

[54]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[55]  Yury Gogotsi,et al.  Intercalation and delamination of layered carbides and carbonitrides , 2013, Nature Communications.

[56]  Qing Tang,et al.  Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. , 2012, Journal of the American Chemical Society.

[57]  Marek Bryjak,et al.  Effect of electrode thickness variation on operation of capacitive deionization , 2012 .

[58]  Yury Gogotsi,et al.  Two-dimensional transition metal carbides. , 2012, ACS nano.

[59]  Baltasar Peñate,et al.  Current trends and future prospects in the design of seawater reverse osmosis desalination technology , 2012 .

[60]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[61]  T. Arnot,et al.  A review of reverse osmosis membrane materials for desalinationDevelopment to date and future poten , 2011 .

[62]  J. Georgiadis,et al.  Science and technology for water purification in the coming decades , 2008, Nature.