Micromechanics modeling of composite with ductile matrix and shape memory alloy reinforcement

Abstract A quantitative micromechanics-based analysis on the role of microstructure and constituent properties in the overall behavior of shape memory alloy (SMA) composite is carried out in the present work. The composite consists of ductile matrix and SMA second phase inclusions. The macroscopic constitutive relations of the composite are established by using self-consistent approach where the micro–macro correlation is realized by volume averaging and by introducing the concept of stress and strain concentration tensors. In this micromechanics modeling, the internal stress and strain in both matrix and SMA and their evolution are derived as function of externally applied thermomechanical loading as well as the degree of phase transformation in SMA. As an application of the present theory in the microstructural design of this novel composite, the constitutive response of composites with spherical SMA particulate embedded in two different elastoplastic matrixes under uniaxial tension is calculated. The obtained results demonstrate several interesting deformation features of the new composite, which are expected to have potential applications in the future.

[1]  P. Lipinski,et al.  Plasticity of metallic polycrystals under complex loading paths , 1987 .

[2]  Y. Benveniste,et al.  On transformation strains and uniform fields in multiphase elastic media , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[3]  Hisaaki Tobushi,et al.  Pseudoelastic Behaviour of TiNi Shape Memory Alloy Subjected to Strain Variations , 1994 .

[4]  Hisaaki Tobushi,et al.  Pseudoelastic Behavior of TiNi Shape Memory Alloy under Strain Variations. , 1994 .

[5]  James G. Boyd,et al.  Thermomechanical Response of Shape Memory Composites , 1993, Smart Structures.

[6]  André Zaoui,et al.  An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .

[7]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[8]  M. Cherkaoui,et al.  Elastic composites with coated reinforcements: A micromechanical approach for nonhomothetic topology , 1995 .

[9]  Bernard Budiansky,et al.  THEORETICAL PREDICTION OF PLASTIC STRAINS OF POLYCRYSTALS , 1961 .

[10]  K. Tanaka,et al.  Thermodynamic models of pseudoelastic behaviour of shape memory alloys , 1992 .

[11]  Keh Chih Hwang,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. II: Study of the individual phenomena , 1993 .

[12]  John W. Hutchinson,et al.  Elastic-plastic behaviour of polycrystalline metals and composites , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  E. Kröner,et al.  Kontinuumstheorie der Versetzungen und Eigenspannungen , 1958 .

[14]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[15]  L. Brinson,et al.  Temperature-induced phase transformation in a shape memory alloy: Phase diagram based kinetics approach , 1997 .

[16]  George J. Weng,et al.  Martensitic transformation and stress-strain relations of shape-memory alloys , 1997 .

[17]  J. Månson,et al.  Vibration Frequency Control of a Polymer Beam Using Embedded Shape-Memory-Alloy Fibres , 1995 .

[18]  Huibin Xu,et al.  On the pseudo-elastic hysteresis , 1991 .

[19]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[20]  J. H. Lee,et al.  Mechanical Properties of Smart Metal Matrix Composite by Shape Memory Effects , 1996 .

[21]  Dimitris C. Lagoudas,et al.  Analysis of phase transformation fronts in SMA composites , 1996, Smart Structures.

[22]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[23]  G. P. Tandon,et al.  A Theory of Particle-Reinforced Plasticity , 1988 .

[24]  E. Patoor,et al.  Thermomechanical behaviour of shape memory alloys , 1988 .

[25]  F. Falk Model free energy, mechanics, and thermodynamics of shape memory alloys , 1980 .

[26]  C. A. Rogers,et al.  The Effect of Thermoplastic Composite Processing on the Performance of Embedded Nitinol Actuators , 1991 .

[27]  James K. Knowles,et al.  A continuum model of a thermoelastic solid capable of undergoing phase transitions , 1993 .

[28]  Jan Van Humbeeck,et al.  Modelling of Adaptive Composite Materials with Embedded Shape Memory Alloy Wires , 1996 .

[29]  J. Shaw,et al.  Thermomechanical aspects of NiTi , 1995 .

[30]  Ingo Müller,et al.  The Interior of the Pseudoelastic Hysteresis , 1991 .

[31]  Shigenori Kobayashi,et al.  Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys , 1986 .

[32]  Stelios Kyriakides,et al.  On the nucleation and propagation of phase transformation fronts in a NiTi alloy , 1997 .

[33]  Kenichi Hamada,et al.  Microstructures and Mechanical Properties of 6061 Al Matrix Smart Composite Containing TiNi Shape Memory Fiber , 1996 .

[34]  Craig A. Rogers,et al.  Active vibration and structural acoustic control of shape memory alloy hybrid composites: Experimental results , 1990 .

[35]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[36]  George J. Weng,et al.  The overall elastoplastic stress-strain relations of dual-phase metals , 1990 .

[37]  Kaushik Bhattacharya,et al.  Comparison of the geometrically nonlinear and linear theories of martensitic transformation , 1993 .

[38]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[39]  D. Lagoudas,et al.  Thermomechanical Response of Shape Memory Composites , 1994 .

[40]  James G. Boyd,et al.  Micromechanics of Active Composites With SMA Fibers , 1994 .

[41]  Hisaaki Tobushi,et al.  Deformation Properties of TiNi Shape Memory Alloy , 1996 .

[42]  Mohammed Cherkaoui,et al.  Role of microstructure in the thermomechanical behavior of SMA composites , 1999 .

[43]  Rodney Hill,et al.  The essential structure of constitutive laws for metal composites and polycrystals , 1967 .

[44]  Richard M. Christensen,et al.  A critical evaluation for a class of micro-mechanics models , 1990 .

[45]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[46]  Dirk Helm,et al.  Thermomechanical behavior of shape memory alloys , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[47]  E. Kröner Zur plastischen verformung des vielkristalls , 1961 .

[48]  P. Lipinski,et al.  Elastoplasticity of micro-inhomogeneous metals at large strains , 1989 .

[49]  Rodney Hill,et al.  Continuum micro-mechanics of elastoplastic polycrystals , 1965 .