A computational study of impurity diffusivities for 5d transition metal solutes in α-Fe
暂无分享,去创建一个
Mark Asta | Peter K. Liaw | Gautam Ghosh | P. Liaw | M. Asta | G. Ghosh | Hong Ding | Shenyan Huang | H. Ding | S. Huang
[1] Marcel H. F. Sluiter,et al. Impurity diffusion activation energies in Al from first principles , 2009 .
[2] Zi-kui Liu,et al. First-principles calculations of impurity diffusion coefficients in dilute Mg alloys using the 8-frequency model , 2011 .
[3] A. Janotti,et al. Diffusion rates of 3d transition metal solutes in nickel by first-principles calculations , 2005 .
[4] R. Holmestad,et al. First-principles calculations of impurity diffusion activation energies in Al , 2006 .
[5] S. Shang,et al. 3d transition metal impurities in aluminum: A first-principles study , 2009 .
[6] Anton Van der Ven,et al. Vacancy mediated substitutional diffusion in binary crystalline solids , 2010 .
[7] I. Elfimov,et al. Ab initio calculations of rare-earth diffusion in magnesium , 2012 .
[8] J. Crangle,et al. The magnetization of pure iron and nickel , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[9] H. H. Potter. The Magneto-Caloric Effect and Other Magnetic Phenomena in Iron , 1934 .
[10] Q. A. Shaikh. Interdiffusion measurement of niobium and tantalum in iron base alloys , 1990 .
[11] A. Claire. Solvent self-diffusion in dilute b.c.c. solid solutions , 1970 .
[12] Peter K. Liaw,et al. Effects of Al on the microstructure and ductility of NiAl-strengthened ferritic steels at room temperature , 2010 .
[13] Manjeera Mantina. A first-principles methodology for diffusion coefficients in metals and dilute alloys , 2008 .
[14] Y. Iijima. Diffusion in high-purity iron: Influence of magnetic transformation on diffusion , 2005 .
[15] C. S. Sundar,et al. Diffusion of Y and Ti/Zr in bcc iron: A first principles study , 2011 .
[16] L. Höglund,et al. Thermo-Calc & DICTRA, computational tools for materials science , 2002 .
[17] L. Girifalco. Activation energy for diffusion in ferromagnetics , 1962 .
[18] R. Borg,et al. THE DIFFUSION OF GOLD, NICKEL, AND COBALT IN ALPHA IRON: A STUDY OF THE EFFECT OF FERROMAGNETISM UPON DIFFUSION , 1963 .
[19] D. Morgan,et al. Ab-initio based modeling of diffusion in dilute bcc Fe–Ni and Fe–Cr alloys and implications for radiation induced segregation , 2011 .
[20] Zi-kui Liu,et al. Predicting Diffusion Coefficients from First Principles via Eyring’s Reaction Rate Theory , 2009 .
[21] H. Mehrer,et al. Self-diffusion in ferromagnetic α-iron , 1977 .
[22] P. Liaw,et al. Thermodynamic modeling and experimental validation of the Fe-Al-Ni-Cr-Mo alloy system , 2012 .
[23] C. Kittel. Introduction to solid state physics , 1954 .
[24] Chris Wolverton,et al. First principles impurity diffusion coefficients , 2009 .
[25] A. Janotti,et al. Solute diffusion in metals: larger atoms can move faster. , 2004, Physical review letters.
[26] Y. Iijima,et al. Influence of magnetization change on solute diffusion in iron , 2005 .
[27] Y. Iijima,et al. Diffusion of niobium in α-iron , 2003 .
[28] C. Becquart,et al. Diffusion of phosphorus in α-Fe : An ab initio study , 2005 .
[29] B. Johansson,et al. Vacancy-solute interactions in ferromagnetic and paramagnetic bcc iron : Ab initio calculations , 2011 .
[30] Y. Iijima,et al. Diffusion of tungsten in α-iron , 2007 .
[31] Ursula R. Kattner,et al. Invited review: Modelling of thermodynamics and diffusion in multicomponent systems , 2009 .
[32] G. Vineyard. Frequency factors and isotope effects in solid state rate processes , 1957 .
[33] Mark Asta,et al. Calculation of impurity diffusivities in α-Fe using first-principles methods , 2010 .