A computational study of impurity diffusivities for 5d transition metal solutes in α-Fe

The impurity diffusivities (D) of the 5d transition metal solutes, Ta–Au, in α-Fe have been computed within a framework combining density-functional-theory calculations, harmonic transition-state theory, the Le Claire nine-frequency model and semi-empirical corrections for magnetic disorder. The calculated diffusion constants show a trend vs. atomic number featuring minimum values corresponding to Re and Os, at the center of the transition metal series. The results for D are correlated with minima and maxima in the magnitudes of the solute–vacancy binding energy and migration energy, respectively.

[1]  Marcel H. F. Sluiter,et al.  Impurity diffusion activation energies in Al from first principles , 2009 .

[2]  Zi-kui Liu,et al.  First-principles calculations of impurity diffusion coefficients in dilute Mg alloys using the 8-frequency model , 2011 .

[3]  A. Janotti,et al.  Diffusion rates of 3d transition metal solutes in nickel by first-principles calculations , 2005 .

[4]  R. Holmestad,et al.  First-principles calculations of impurity diffusion activation energies in Al , 2006 .

[5]  S. Shang,et al.  3d transition metal impurities in aluminum: A first-principles study , 2009 .

[6]  Anton Van der Ven,et al.  Vacancy mediated substitutional diffusion in binary crystalline solids , 2010 .

[7]  I. Elfimov,et al.  Ab initio calculations of rare-earth diffusion in magnesium , 2012 .

[8]  J. Crangle,et al.  The magnetization of pure iron and nickel , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  H. H. Potter The Magneto-Caloric Effect and Other Magnetic Phenomena in Iron , 1934 .

[10]  Q. A. Shaikh Interdiffusion measurement of niobium and tantalum in iron base alloys , 1990 .

[11]  A. Claire Solvent self-diffusion in dilute b.c.c. solid solutions , 1970 .

[12]  Peter K. Liaw,et al.  Effects of Al on the microstructure and ductility of NiAl-strengthened ferritic steels at room temperature , 2010 .

[13]  Manjeera Mantina A first-principles methodology for diffusion coefficients in metals and dilute alloys , 2008 .

[14]  Y. Iijima Diffusion in high-purity iron: Influence of magnetic transformation on diffusion , 2005 .

[15]  C. S. Sundar,et al.  Diffusion of Y and Ti/Zr in bcc iron: A first principles study , 2011 .

[16]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[17]  L. Girifalco Activation energy for diffusion in ferromagnetics , 1962 .

[18]  R. Borg,et al.  THE DIFFUSION OF GOLD, NICKEL, AND COBALT IN ALPHA IRON: A STUDY OF THE EFFECT OF FERROMAGNETISM UPON DIFFUSION , 1963 .

[19]  D. Morgan,et al.  Ab-initio based modeling of diffusion in dilute bcc Fe–Ni and Fe–Cr alloys and implications for radiation induced segregation , 2011 .

[20]  Zi-kui Liu,et al.  Predicting Diffusion Coefficients from First Principles via Eyring’s Reaction Rate Theory , 2009 .

[21]  H. Mehrer,et al.  Self-diffusion in ferromagnetic α-iron , 1977 .

[22]  P. Liaw,et al.  Thermodynamic modeling and experimental validation of the Fe-Al-Ni-Cr-Mo alloy system , 2012 .

[23]  C. Kittel Introduction to solid state physics , 1954 .

[24]  Chris Wolverton,et al.  First principles impurity diffusion coefficients , 2009 .

[25]  A. Janotti,et al.  Solute diffusion in metals: larger atoms can move faster. , 2004, Physical review letters.

[26]  Y. Iijima,et al.  Influence of magnetization change on solute diffusion in iron , 2005 .

[27]  Y. Iijima,et al.  Diffusion of niobium in α-iron , 2003 .

[28]  C. Becquart,et al.  Diffusion of phosphorus in α-Fe : An ab initio study , 2005 .

[29]  B. Johansson,et al.  Vacancy-solute interactions in ferromagnetic and paramagnetic bcc iron : Ab initio calculations , 2011 .

[30]  Y. Iijima,et al.  Diffusion of tungsten in α-iron , 2007 .

[31]  Ursula R. Kattner,et al.  Invited review: Modelling of thermodynamics and diffusion in multicomponent systems , 2009 .

[32]  G. Vineyard Frequency factors and isotope effects in solid state rate processes , 1957 .

[33]  Mark Asta,et al.  Calculation of impurity diffusivities in α-Fe using first-principles methods , 2010 .