Large-scale volumetric flow measurement in a pure thermal plume by dense tracking of helium-filled soap bubbles

[1]  Tobias Jahn,et al.  Volumetric Flow Field Measurement: An Implementation of Shake-The-Box , 2018 .

[2]  F. Scarano,et al.  HFSB-seeding for large-scale tomographic PIV in wind tunnels , 2016 .

[3]  F. Scarano,et al.  Large-scale volumetric pressure from tomographic PTV with HFSB tracers , 2016, Experiments in Fluids.

[4]  A. Schröder,et al.  Shake-The-Box: Lagrangian particle tracking at high particle image densities , 2016, Experiments in Fluids.

[5]  George Haller,et al.  Spectral-clustering approach to Lagrangian vortex detection. , 2015, Physical review. E.

[6]  Andreas Schröder,et al.  From Noisy Particle Tracks to Velocity, Acceleration and Pressure Fields using B-splines and Penalties , 2016 .

[7]  G. Rosi,et al.  Lagrangian coherent structure identification using a Voronoi tessellation-based networking algorithm , 2015, Experiments in Fluids.

[8]  T Peacock,et al.  Introduction to Focus Issue: Objective Detection of Coherent Structures. , 2015, Chaos.

[9]  F. Scarano,et al.  On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments , 2015 .

[10]  G. Haller Lagrangian Coherent Structures , 2015 .

[11]  Jiarong Hong,et al.  Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine , 2014, Nature Communications.

[12]  G. Rosi,et al.  Characterizing the lower log region of the atmospheric surface layer via large-scale particle tracking velocimetry , 2014, Experiments in Fluids.

[13]  Dirk Michaelis,et al.  Shake The Box: A highly efficient and accurate Tomographic Particle Tracking Velocimetry (TOMO-PTV) method using prediction of particle positions , 2013 .

[14]  Shane D. Ross,et al.  Computation of finite-time Lyapunov exponents from time-resolved particle image velocimetry data , 2013 .

[15]  Bernhard Wieneke,et al.  Non-uniform optical transfer functions in particle imaging: calibration and application to tomographic reconstruction , 2013 .

[16]  B. Wieneke Iterative reconstruction of volumetric particle distribution , 2013 .

[17]  M. Möbius,et al.  A public study of the lifetime distribution of soap films , 2011 .

[18]  Matthias Kühn,et al.  Large-scale tomographic particle image velocimetry using helium-filled soap bubbles , 2011 .

[19]  Steven L Brunton,et al.  Fast computation of finite-time Lyapunov exponent fields for unsteady flows. , 2010, Chaos.

[20]  Thomas Peacock,et al.  Introduction to Focus Issue: Lagrangian Coherent Structures. , 2010, Chaos.

[21]  Pascal Henry Biwole,et al.  A complete 3D particle tracking algorithm and its applications to the indoor airflow study , 2009 .

[22]  Matthias Kühn,et al.  Large scale particle image velocimetry with helium filled soap bubbles , 2009 .

[23]  Bernhard Wieneke,et al.  Volume self-calibration for 3D particle image velocimetry , 2008 .

[24]  S. Balachandar,et al.  Direct numerical simulations of a rapidly expanding thermal plume: structure and entrainment interaction , 2008, Journal of Fluid Mechanics.

[25]  E. Reyssat,et al.  How long will a bubble be , 2007, 0709.4412.

[26]  Bernhard Wieneke,et al.  Tomographic particle image velocimetry , 2006 .

[27]  Minh Vuong Pham,et al.  Three-Dimensional Characterization of a Pure Thermal Plume , 2005 .

[28]  G. Haller Distinguished material surfaces and coherent structures in three-dimensional fluid flows , 2001 .

[29]  G. Voth,et al.  Fluid particle accelerations in fully developed turbulence , 2000, Nature.

[30]  A. Melling Tracer particles and seeding for particle image velocimetry , 1997 .

[31]  N. Malik,et al.  Particle tracking velocimetry in three-dimensional flows , 1993 .

[32]  Armin Gruen,et al.  Particle tracking velocimetry in three-dimensional flows , 1993, Experiments in Fluids.

[33]  P. Klimas Helium bubble survey of an opening parachute flowfield. , 1973 .

[34]  Geoffrey Ingram Taylor,et al.  Turbulent gravitational convection from maintained and instantaneous sources , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.