Templated synthesis of glycoluril hexamer and monofunctionalized cucurbit[6]uril derivatives.

We report that the p-xylylenediammonium ion (11) acts as a template in the cucurbit[n]uril forming reaction that biases the reaction toward the production of methylene bridged glycoluril hexamer (6C) and bis-nor-seco-CB[10]. Hexamer 6C is readily available on the gram scale by a one step synthetic procedure that avoids chromatography. Hexamer 6C undergoes macrocylization with (substituted) phthalaldehydes 12, 14, 15, and 18-in 9 M H(2)SO(4) or concd HCl at room temperature to deliver monofunctionalized CB[6] derivatives 13, 16, 17, and 19-that are poised for further functionalization reactions. The kinetics of the macrocyclization reaction between hexamer and formaldehyde or phthalaldehyde depends on the presence and identity of ammonium ions as templates. p-Xylylenediammonium ion (11) which barely fits inside CB[6] sized cavities acts as a negative template which slows down transformation of 6C and paraformaldehyde into CB[6]. In contrast, 11 and hexanediammonium ion (20) act as a positive template that promotes the macrocyclization reaction between 6C and 12 to deliver (±)-21 as a key intermediate along the mechanistic pathway to CB[6] derivatives. Naphthalene-CB[6] derivative 19 which contains both fluorophore and ureidyl C═O metal-ion (e.g., Eu(3+)) binding sites forms the basis for a fluorescence turn-on assay for suitable ammonium ions (e.g., hexanediammonium ion and histamine).

[1]  W. Nau,et al.  Deep Inside Cucurbiturils: Physical Properties and Volumes of their Inner Cavity Determine the Hydrophobic Driving Force for Host–Guest Complexation , 2011 .

[2]  V. Šindelář,et al.  Novel Supramolecular Hosts Based on Linear and Cyclic Oligomers of Glycoluril , 2011 .

[3]  R. Behrend,et al.  I. Ueber Condensationsproducte aus Glycoluril und Formaldehyd , 1905 .

[4]  Barry B Snushall,et al.  Controlling factors in the synthesis of cucurbituril and its homologues. , 2001, The Journal of organic chemistry.

[5]  V. Ramamurthy,et al.  Templating Photodimerization of trans-Cinnamic Acids with Cucurbit[8]uril and γ-Cyclodextrin , 2005 .

[6]  Xiaoyong Lu,et al.  Silver-promoted desilylation catalyzed by ortho- and allosteric cucurbiturils. , 2010, Organic letters.

[7]  Michael K. Gilson,et al.  A synthetic host-guest system achieves avidin-biotin affinity by overcoming enthalpy–entropy compensation , 2007, Proceedings of the National Academy of Sciences.

[8]  Mao‐Lin Hu,et al.  Synthesis of a symmetrical tetrasubstituted cucurbit[6]uril and its host-guest inclusion complex with 2,2 ′-bipyridine , 2004 .

[9]  P. Zavalij,et al.  The inverted cucurbit[n]uril family. , 2005, Journal of the American Chemical Society.

[10]  L. Isaacs Cucurbit[n]urils: from mechanism to structure and function. , 2009, Chemical communications.

[11]  Donal H. Macartney,et al.  Encapsulation of Drug Molecules by Cucurbiturils: Effects on their Chemical Properties in Aqueous Solution , 2011 .

[12]  Adam R. Urbach,et al.  Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host. , 2005, Journal of the American Chemical Society.

[13]  Jae Wook Lee,et al.  Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. , 2003, Accounts of chemical research.

[14]  Young Ho Ko,et al.  Novel molecular drug carrier: encapsulation of oxaliplatin in cucurbit[7]uril and its effects on stability and reactivity of the drug. , 2005, Organic & biomolecular chemistry.

[15]  Young Ho Ko,et al.  Functionalized cucurbiturils and their applications. , 2007, Chemical Society reviews.

[16]  Lyle Isaacs,et al.  The cucurbit[n]uril family: prime components for self-sorting systems. , 2005, Journal of the American Chemical Society.

[17]  O. Scherman,et al.  Polymer deaggregation and assembly controlled by a double cavity cucurbituril , 2010 .

[18]  J. Steinke,et al.  Catalytically self-threading polyrotaxanes , 1999 .

[19]  W. Nau,et al.  Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo study. , 2010, Organic & biomolecular chemistry.

[20]  C. Peter,et al.  An efficient synthesis of substituted benzene-1,2-dicarboxaldehydes , 2007 .

[21]  Yu Zhao,et al.  Cucurbit[n]urils (n=7, 8) binding of camptothecin and the effects on solubility and reactivity of the anticancer drug , 2008 .

[22]  Kimoon Kim,et al.  Cucurbituril-based nanoparticles: a new efficient vehicle for targeted intracellular delivery of hydrophobic drugs. , 2009, Chemical communications.

[23]  L. García‐Río,et al.  Supramolecular catalysis by cucurbit[7]uril and cyclodextrins: similarity and differences. , 2010, The Journal of organic chemistry.

[24]  V. Fedin,et al.  Mono- and polynuclear aqua complexes and cucurbit[6]uril: Versatile building blocks for supramolecular chemistry , 2004 .

[25]  Kimoon Kim,et al.  Highly selective carbon dioxide sorption in an organic molecular porous material. , 2010, Journal of the American Chemical Society.

[26]  D. Samsonenko,et al.  Distortion of the Cucurbituril Molecule by an Included 4‐Methylpyridinum Cation , 2002 .

[27]  Yong Chen,et al.  Molecular Selective Binding and Nanofabrication of Cucurbituril/Cyclodextrin Pairs , 2011 .

[28]  D. Tuncel,et al.  Supramolecular Assemblies Constructed by Cucurbituril‐Catalyzed Click Reaction , 2011 .

[29]  P. Zavalij,et al.  Cucurbit[n]uril formation proceeds by step-growth cyclo-oligomerization. , 2008, Journal of the American Chemical Society.

[30]  P. Zavalij,et al.  Folding of long-chain alkanediammonium ions promoted by a cucurbituril derivative. , 2008, Organic letters.

[31]  A. Kaifer,et al.  Complexation of poly(phenylenevinylene) precursors and monomers by cucurbituril hosts , 2006 .

[32]  W. Nau,et al.  Design of a fluorescent dye for indicator displacement from cucurbiturils: a macrocycle-responsive fluorescent switch operating through a pKa shift. , 2008, Organic letters.

[33]  P. Zavalij,et al.  Refolding foldamers: triazene-arylene oligomers that change shape with chemical stimuli. , 2007, Journal of the American Chemical Society.

[34]  Y. Ko,et al.  Reduction-sensitive, robust vesicles with a non-covalently modifiable surface as a multifunctional drug-delivery platform. , 2010, Small.

[35]  L. Isaacs,et al.  Cucurbit[7]uril complexation drives thermal trans-cis-azobenzene isomerization and enables colorimetric amine detection. , 2009, Chemistry.

[36]  H. Ritter,et al.  Cyclodextrin-click-cucurbit[6]uril: Combi-Receptor for Supramolecular Polymer Systems in Water , 2009 .

[37]  Simin Liu,et al.  Mechanism of the conversion of inverted CB[6] to CB[6]. , 2007, The Journal of organic chemistry.

[38]  Kimoon Kim,et al.  Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. , 2003, Journal of the American Chemical Society.

[39]  P. Portoghese,et al.  o-Naphthalenedicarboxaldehyde derivative of 7'-aminonaltrindole as a selective delta-opioid receptor affinity label. , 2007, Journal of medicinal chemistry.

[40]  M. Wimmerová,et al.  Bambus[n]urils: a new family of macrocyclic anion receptors. , 2011, Organic letters.

[41]  Eunju Kim,et al.  Supramolecular assemblies built with host-stabilized charge-transfer interactions. , 2007, Chemical communications.

[42]  S. Jockusch,et al.  Supramolecular photocatalysis: insights into cucurbit[8]uril catalyzed photodimerization of 6-methylcoumarin. , 2011, Chemical communications.

[43]  L. Isaacs The Mechanism of Cucurbituril Formation , 2011 .

[44]  P. Zavalij,et al.  Metal-ion-induced folding and dimerization of a glycoluril decamer in water. , 2009, Organic letters.

[45]  S. Walker,et al.  The potential of cucurbit[n]urils in drug delivery , 2011 .

[46]  Sarit S. Agasti,et al.  Recognition-Mediated Activation of Therapeutic Gold Nanoparticles Inside Living Cells , 2010, Nature chemistry.

[47]  Y. Ko,et al.  Ultrastable Host-Guest Complexes and Their Applications , 2011 .

[48]  E. Schollmeyer,et al.  Polyrotaxanes and pseudopolyrotaxanes of polyamides and cucurbituril , 1999 .

[49]  Soumyadip Ghosh,et al.  Biological catalysis regulated by cucurbit[7]uril molecular containers. , 2010, Journal of the American Chemical Society.

[50]  W. L. Mock,et al.  Structure and selectivity in host―guest complexes of cucurbituril , 1986 .

[51]  W. Nau,et al.  Activation and stabilization of drugs by supramolecular pKa shifts: drug-delivery applications tailored for cucurbiturils. , 2008, Angewandte Chemie.

[52]  A. Day,et al.  The Effects of Alkali Metal Cations on Product Distributions in Cucurbit[n]uril Synthesis , 2002 .

[53]  J. Fettinger,et al.  Cucurbit[n]uril analogues. , 2003, Organic letters.

[54]  P. Zavalij,et al.  Cucurbit[6]uril p-phenyl­enediammonium diiodide deca­hydrate inclusion complex , 2007 .

[55]  P. Zavalij,et al.  Reasons why aldehydes do not generally participate in cucurbit[n]uril forming reactions. , 2010, The Journal of organic chemistry.

[56]  P. Zavalij,et al.  Cucurbit[10]uril. , 2005, Journal of the American Chemical Society.

[57]  P. Zavalij,et al.  A clipped [3]rotaxane derived from bis-nor-seco-cucurbit[10]uril. , 2011, Chemical communications.

[58]  Ruibing Wang,et al.  Cucurbit[7]uril mediates the stereoselective [4+4] photodimerization of 2-aminopyridine hydrochloride in aqueous solution. , 2006, The Journal of organic chemistry.

[59]  P. Berthault,et al.  Interaction of xenon with cucurbit[5]uril in water. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[60]  S. Ryu,et al.  Supramolecular fishing for plasma membrane proteins using an ultrastable synthetic host-guest binding pair. , 2011, Nature chemistry.

[61]  J. Fettinger,et al.  Diastereoselective formation of glycoluril dimers: isomerization mechanism and implications for cucurbit[n]uril synthesis. , 2002, Journal of the American Chemical Society.

[62]  P. Zavalij,et al.  Nor-seco-cucurbit[10]uril exhibits homotropic allosterism. , 2006, Journal of the American Chemical Society.

[63]  W. Nau,et al.  Cucurbituril-mediated supramolecular acid catalysis. , 2009, Organic letters.

[64]  I. Dance,et al.  A Cucurbituril-Based Gyroscane: A New Supramolecular Form This research was supported by the Australian Research Council and the University of New South Wales. G.R.L. acknowledges the award of a Royal Society Fellowship tenable in Australia. , 2002 .

[65]  A. Lai,et al.  NMR study of the reversible trapping of SF6 by cucurbit[6]uril in aqueous solution. , 2008, The journal of physical chemistry. B.

[66]  Adam R. Urbach,et al.  Molecular recognition of insulin by a synthetic receptor. , 2011, Journal of the American Chemical Society.

[67]  J. Fettinger,et al.  Cucurbit[n]uril analogues: synthetic and mechanistic studies. , 2005, The Journal of organic chemistry.

[68]  Adam R. Urbach,et al.  Determining protease substrate selectivity and inhibition by label-free supramolecular tandem enzyme assays. , 2011, Journal of the American Chemical Society.

[69]  Eunsung Lee,et al.  New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n = 5, 7, and 8) , 2000 .

[70]  E. Schollmeyer,et al.  Supramolecular solid-gas complexes: a thermodynamic approach. , 2007, Angewandte Chemie.

[71]  H. Ritter,et al.  Lower Critical Solution Temperature Properties of N-Isopropylacrylamide-Based Pseudopolyrotaxanes by Complexation with Cucurbituril[6] , 2007 .

[72]  Adam R. Urbach,et al.  Molecular Recognition of Amino Acids, Peptides, and Proteins by Cucurbit[n]uril Receptors , 2011 .

[73]  C. Park,et al.  Facile, template-free synthesis of stimuli-responsive polymer nanocapsules for targeted drug delivery. , 2010, Angewandte Chemie.

[74]  J. Collins,et al.  Cucurbit[n]uril binding of platinum anticancer complexes. , 2006, Dalton transactions.

[75]  Yu Liu,et al.  Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]uril. , 2007, The Journal of organic chemistry.

[76]  E. Anslyn Supramolecular analytical chemistry. , 2007, The Journal of organic chemistry.

[77]  D. Koh,et al.  Artificial ion channel formed by cucurbit[n]uril derivatives with a carbonyl group fringed portal reminiscent of the selectivity filter of K+ channels. , 2004, Journal of the American Chemical Society.

[78]  Lyle Isaacs,et al.  The cucurbit[n]uril family. , 2005, Angewandte Chemie.

[79]  P. Zavalij,et al.  Chiral recognition inside a chiral cucurbituril. , 2007, Angewandte Chemie.

[80]  L. Isaacs,et al.  A cucurbit[6]uril analogue: host properties monitored by fluorescence spectroscopy. , 2005, The journal of physical chemistry. B.

[81]  E. Schollmeyer,et al.  Cucurbituril as a ligand for the complexation of cations in aqueous solutions , 1992 .

[82]  Y. Miyahara,et al.  "Molecular" molecular sieves: lid-free decamethylcucurbit[5]uril absorbs and desorbs gases selectively. , 2002, Angewandte Chemie.

[83]  Y. Ko,et al.  A facile, stereoselective [2 + 2] photoreaction mediated by curcurbit[8]uril. , 2001, Chemical communications.

[84]  W. Nau,et al.  Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes , 2007, Nature Methods.

[85]  W. L. Mock,et al.  Catalysis by cucurbituril. The significance of bound-substrate destabilization for induced triazole formation , 1989 .

[86]  Oren A Scherman,et al.  Benzobis(imidazolium)-cucurbit[8]uril complexes for binding and sensing aromatic compounds in aqueous solution. , 2010, Chemistry.

[87]  L. Isaacs,et al.  Toward supramolecular polymers incorporating double cavity cucurbituril hosts , 2009 .

[88]  Kimoon Kim,et al.  Molecular Container Assembly Capable of Controlling Binding and Release of Its Guest Molecules: Reversible Encapsulation of Organic Molecules in Sodium Ion Complexed Cucurbituril , 1996 .

[89]  A. Kaifer,et al.  Ternary complexes comprising cucurbit[10]uril, porphyrins, and guests. , 2008, Angewandte Chemie.

[90]  L. Isaacs,et al.  Recognition properties of acyclic glycoluril oligomers. , 2011, Organic letters.

[91]  Harry L. Anderson,et al.  Expanding roles for templates in synthesis , 1993 .

[92]  I. Dance,et al.  A cucurbituril-based gyroscane: a new supramolecular form. , 2002, Angewandte Chemie.

[93]  Chenfeng Ke,et al.  A polymeric pseudorotaxane constructed from cucurbituril and aniline, and stabilization of its radical cation. , 2008, Angewandte Chemie.

[94]  A. Kaifer,et al.  Cucurbiturils as Versatile Receptors for Redox Active Substrates , 2011 .

[95]  C. Nuckolls,et al.  Self‐Assembly and Electronics of Dipolar Linear Acenes , 2005 .

[96]  Lyle Isaacs,et al.  Toxicology and Drug Delivery by Cucurbit[n]uril Type Molecular Containers , 2010, PloS one.

[97]  T. White,et al.  Cucurbit[7]uril ando-Carborane Self-Assemble to Form a Molecular Ball Bearing , 2002 .

[98]  Kimoon Kim,et al.  Cucurbit[6]uril: organic molecular porous material with permanent porosity, exceptional stability, and acetylene sorption properties. , 2008, Angewandte Chemie.