Evolved Non-Keplerian Spacecraft Trajectories for Near-Earth Orbital Maneuvers

In this paper we use Differential Evolution (DE), with best-evolved results refined using a Nelder-Mead optimization, to solve complex problems in orbital mechanics relevant to low Earth orbits (LEO) and within the Earth-Moon system. A class of Lambert problems is examined to evaluate the performance and robustness of this evolutionary approach to orbit optimization. We evolve impulsive initial velocity vectors giving rise to intercept trajectories that take a spacecraft from given initial positions to specified target positions. We seek to minimize final positional error subject to time-of-flight and/or energy (fuel) constraints. We first validate that the method can recover known analytical solutions obtainable with the assumption of Keplerian motion. We then apply the method to more complex and realistic non-Keplerian problems incorporating trajectory perturbations arising in LEO due to the Earth’s oblateness and rarefied atmospheric drag. Finally, a rendezvous trajectory from LEO to the L4 Lagrange point is computed. The viable trajectories obtained for these challenging problems suggest the robustness of our computational approach for real-world orbital trajectory design in LEO situations where no analytical solution exists.

[1]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[2]  B. Barden,et al.  Application of Dynamical Systems Theory to Trajectory Design for a Libration Point Mission , 1997 .

[3]  Riccardo Poli,et al.  Genetic and Evolutionary Computation , 2006, Intelligenza Artificiale.

[4]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[5]  J. van Leeuwen,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[6]  Robert W. Farquhar,et al.  Trajectories and Orbital Maneuvers for the First Libration-Point Satellite , 1980 .

[7]  Joyce Wong,et al.  The University Micro/Nanosatellite as a Micropropulsion Testbed , 1999 .

[8]  Greg Johnson,et al.  COPERNICUS, A GENERALIZED TRAJECTORY DESIGN AND OPTIMIZATION SYSTEM , 2003 .

[9]  Anastassios E. Petropoulos,et al.  Increamenting multi-objective evolutionary algorithms: Performance studies and comparisons , 2001 .

[10]  Margaret J. Eppstein,et al.  Improving uniformity of solution spacing in biobjective evolution , 2013, GECCO '13 Companion.

[11]  Jacob Englander Automated trajectory planning for multiple-flyby interplanetary missions , 2013 .

[12]  Bruce A. Conway,et al.  Automated Mission Planning via Evolutionary Algorithms , 2012 .

[13]  Henry Helvajian,et al.  Small Satellites: Past, Present, and Future , 2009 .

[14]  Howard D. Curtis,et al.  Orbital Mechanics for Engineering Students , 2005 .

[15]  Margaret J. Eppstein,et al.  Evolved spacecraft trajectories for low earth orbit , 2014, GECCO.

[16]  Chiara Toglia,et al.  Optimization of orbital trajectories using genetic algorithms , 2008 .

[17]  Yungsun Hahn,et al.  Genesis mission design , 1998 .

[18]  Dario Izzo,et al.  Search for a grand tour of the jupiter galilean moons , 2013, GECCO '13.

[19]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[20]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[21]  J. Junkins,et al.  Analytical Mechanics of Space Systems , 2003 .

[22]  Margaret J. Eppstein,et al.  Evolutionary Optimization of Satellite Formation Topology Over a Region of Interest , 2015 .

[23]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.