Composition and temperature-dependent phase transition in miscible Mo1−xWxTe2 single crystals
暂无分享,去创建一个
Kang L. Wang | S. Yao | Y. Lv | Y. Chen | Jian Zhou | B. Pang | Song-Tao Dong | Bin-Bin Zhang | Xiao Li | Dajun Lin | W. Liu | Ligang Ma | Yanfen Chen | Lin Cao | Ming-Hui Lu | Wenchao Liu | W. Liu | Yulin Chen | B. P. Bin Pang | W. Liu
[1] Guanghou Wang,et al. Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2 , 2016, Nature Communications.
[2] Yan-Feng Chen,et al. Experimental Observation of Anisotropic Adler-Bell-Jackiw Anomaly in Type-II Weyl Semimetal WTe_{1.98} Crystals at the Quasiclassical Regime. , 2016, Physical review letters.
[3] F. Miao,et al. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2 , 2016, Nature Communications.
[4] Kyeongjae Cho,et al. Charge Mediated Reversible Metal-Insulator Transition in Monolayer MoTe2 and WxMo1-xTe2 Alloy. , 2016, ACS nano.
[5] Ji Feng,et al. Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2 , 2016, Nature Communications.
[6] A. Davydov,et al. Phonon Anharmonicity in Bulk T d -MoTe2. , 2016, Applied physics letters.
[7] Yulin Chen,et al. Dramatically decreased magnetoresistance in non-stoichiometric WTe2 crystals , 2016, Scientific Reports.
[8] P. Canfield,et al. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2 , 2016, 1604.05176.
[9] S. M. Walker,et al. Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WT e 2 , 2016, 1604.02411.
[10] W. Duan,et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 , 2016, Nature Physics.
[11] Timothy M. McCormick,et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. , 2016, Nature materials.
[12] Daniel S. Sanchez,et al. Prediction of an arc-tunable Weyl Fermion metallic state in Mo$_x$W$_{1-x}$Te$_2$ , 2016 .
[13] E. Reed,et al. Structural Phase Transitions by Design in Monolayer Alloys. , 2016, ACS nano.
[14] Thomas Heine,et al. Two-dimensional transition metal dichalcogenides with a hexagonal lattice: Room-temperature quantum spin Hall insulators , 2015, 1512.03346.
[15] H. Hsu,et al. Temperature dependent piezoreflectance study of Mo1−xWxSe2 layered crystals , 2015 .
[16] M. Troyer,et al. MoTe_{2}: A Type-II Weyl Topological Metal. , 2015, Physical review letters.
[17] Su-Yang Xu,et al. Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2 , 2015, Nature Communications.
[18]
C. Felser,et al.
Prediction of Weyl semimetal in orthorhombic
[19] Xi Dai,et al. Type-II Weyl semimetals , 2015, Nature.
[20] I. Tanaka,et al. First principles phonon calculations in materials science , 2015, 1506.08498.
[21] Suyeon Cho,et al. Bandgap opening in few-layered monoclinic MoTe2 , 2015, Nature Physics.
[22] X. Dai,et al. Observation of Weyl nodes in TaAs , 2015, Nature Physics.
[23] X. Dai,et al. Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs , 2015, 1503.01304.
[24] S. Ishiwata,et al. Rich structural phase diagram and thermoelectric properties of layered tellurides Mo1-xNbxTe2 , 2015, 1502.05634.
[25] Shuang Jia,et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.
[26] Guanghou Wang,et al. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride , 2015, Nature Communications.
[27] Y. Shi,et al. Raman scattering investigation of large positive magnetoresistance material WTe2 , 2015, 1501.06321.
[28] X. Dai,et al. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.
[29] Junwei Liu,et al. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides , 2014, Science.
[30] Q. Gibson,et al. Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.
[31] L. Fu,et al. Quantum Spin Hall Effect and Topological Field Effect Transistor in Two-Dimensional Transition Metal Dichalcogenides , 2014, 1406.2749.
[32] Kazuhito Tsukagoshi,et al. Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe₂. , 2014, ACS nano.
[33] Sefaattin Tongay,et al. Two-dimensional semiconductor alloys: Monolayer Mo1−xWxSe2 , 2014 .
[34] Dong Wang,et al. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. , 2013, ACS nano.
[35] Hua Zhang,et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.
[36] Qing Hua Wang,et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.
[37]
B. Chakraborty,et al.
Symmetry-dependent phonon renormalization in monolayer MoS
[38] D. Bowler,et al. Van der Waals density functionals applied to solids , 2011, 1102.1358.
[39] D. Bowler,et al. Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[40] L. Forró,et al. From Mott state to superconductivity in 1T-TaS2. , 2008, Nature materials.
[41] T. Zandt,et al. Quadratic temperature dependence up to 50 K of the resistivity of metallic MoTe2 , 2007 .
[42] Y. Kubo,et al. Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition , 2001, cond-mat/0111063.
[43] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[44] C. Ho,et al. Temperature dependence of energies and broadening parameters of the band-edge excitons of ? single crystals , 1998 .
[45] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[46] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[47] Hafner,et al. Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.
[48] W. G. Dawson,et al. Electronic structure and crystallography of MoTe2 and WTe2 , 1987 .
[49] R. Clarke,et al. A low-temperature structural phase transition in β-MoTe2 , 1978 .
[50] R. Friend,et al. Electrical resistivity anomaly in β-MoTe2 (metallic behaviour) , 1978 .
[51] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .
[52] H. Drew,et al. Electron Relaxation Rates in Bismuth at Microwave and Far-Infrared Frequencies , 1970 .
[53] J. A. Champion,et al. Some properties of (Mo, W) (Se, Te)2 , 1965 .
[54] E. Revolinsky,et al. Electrical Properties of the MoTe2−WTe2 and MoSe2−WSe2 Systems , 1964 .
[55] D. R.,et al. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides , 2001 .