Composition and temperature-dependent phase transition in miscible Mo1−xWxTe2 single crystals

[1]  Guanghou Wang,et al.  Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2 , 2016, Nature Communications.

[2]  Yan-Feng Chen,et al.  Experimental Observation of Anisotropic Adler-Bell-Jackiw Anomaly in Type-II Weyl Semimetal WTe_{1.98} Crystals at the Quasiclassical Regime. , 2016, Physical review letters.

[3]  F. Miao,et al.  Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2 , 2016, Nature Communications.

[4]  Kyeongjae Cho,et al.  Charge Mediated Reversible Metal-Insulator Transition in Monolayer MoTe2 and WxMo1-xTe2 Alloy. , 2016, ACS nano.

[5]  Ji Feng,et al.  Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2 , 2016, Nature Communications.

[6]  A. Davydov,et al.  Phonon Anharmonicity in Bulk T d -MoTe2. , 2016, Applied physics letters.

[7]  Yulin Chen,et al.  Dramatically decreased magnetoresistance in non-stoichiometric WTe2 crystals , 2016, Scientific Reports.

[8]  P. Canfield,et al.  Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2 , 2016, 1604.05176.

[9]  S. M. Walker,et al.  Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WT e 2 , 2016, 1604.02411.

[10]  W. Duan,et al.  Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 , 2016, Nature Physics.

[11]  Timothy M. McCormick,et al.  Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. , 2016, Nature materials.

[12]  Daniel S. Sanchez,et al.  Prediction of an arc-tunable Weyl Fermion metallic state in Mo$_x$W$_{1-x}$Te$_2$ , 2016 .

[13]  E. Reed,et al.  Structural Phase Transitions by Design in Monolayer Alloys. , 2016, ACS nano.

[14]  Thomas Heine,et al.  Two-dimensional transition metal dichalcogenides with a hexagonal lattice: Room-temperature quantum spin Hall insulators , 2015, 1512.03346.

[15]  H. Hsu,et al.  Temperature dependent piezoreflectance study of Mo1−xWxSe2 layered crystals , 2015 .

[16]  M. Troyer,et al.  MoTe_{2}: A Type-II Weyl Topological Metal. , 2015, Physical review letters.

[17]  Su-Yang Xu,et al.  Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2 , 2015, Nature Communications.

[18]  C. Felser,et al.  Prediction of Weyl semimetal in orthorhombicMoTe2 , 2015, Physical Review B.

[19]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[20]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[21]  Suyeon Cho,et al.  Bandgap opening in few-layered monoclinic MoTe2 , 2015, Nature Physics.

[22]  X. Dai,et al.  Observation of Weyl nodes in TaAs , 2015, Nature Physics.

[23]  X. Dai,et al.  Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs , 2015, 1503.01304.

[24]  S. Ishiwata,et al.  Rich structural phase diagram and thermoelectric properties of layered tellurides Mo1-xNbxTe2 , 2015, 1502.05634.

[25]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[26]  Guanghou Wang,et al.  Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride , 2015, Nature Communications.

[27]  Y. Shi,et al.  Raman scattering investigation of large positive magnetoresistance material WTe2 , 2015, 1501.06321.

[28]  X. Dai,et al.  Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.

[29]  Junwei Liu,et al.  Quantum spin Hall effect in two-dimensional transition metal dichalcogenides , 2014, Science.

[30]  Q. Gibson,et al.  Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.

[31]  L. Fu,et al.  Quantum Spin Hall Effect and Topological Field Effect Transistor in Two-Dimensional Transition Metal Dichalcogenides , 2014, 1406.2749.

[32]  Kazuhito Tsukagoshi,et al.  Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe₂. , 2014, ACS nano.

[33]  Sefaattin Tongay,et al.  Two-dimensional semiconductor alloys: Monolayer Mo1−xWxSe2 , 2014 .

[34]  Dong Wang,et al.  Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. , 2013, ACS nano.

[35]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[36]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[37]  B. Chakraborty,et al.  Symmetry-dependent phonon renormalization in monolayer MoS2transistor , 2012, Physical Review B.

[38]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[39]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  L. Forró,et al.  From Mott state to superconductivity in 1T-TaS2. , 2008, Nature materials.

[41]  T. Zandt,et al.  Quadratic temperature dependence up to 50 K of the resistivity of metallic MoTe2 , 2007 .

[42]  Y. Kubo,et al.  Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition , 2001, cond-mat/0111063.

[43]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[44]  C. Ho,et al.  Temperature dependence of energies and broadening parameters of the band-edge excitons of ? single crystals , 1998 .

[45]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[46]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[47]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[48]  W. G. Dawson,et al.  Electronic structure and crystallography of MoTe2 and WTe2 , 1987 .

[49]  R. Clarke,et al.  A low-temperature structural phase transition in β-MoTe2 , 1978 .

[50]  R. Friend,et al.  Electrical resistivity anomaly in β-MoTe2 (metallic behaviour) , 1978 .

[51]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[52]  H. Drew,et al.  Electron Relaxation Rates in Bismuth at Microwave and Far-Infrared Frequencies , 1970 .

[53]  J. A. Champion,et al.  Some properties of (Mo, W) (Se, Te)2 , 1965 .

[54]  E. Revolinsky,et al.  Electrical Properties of the MoTe2−WTe2 and MoSe2−WSe2 Systems , 1964 .

[55]  D. R.,et al.  Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides , 2001 .