Probabilistic Dense Reconstruction from a Moving Camera

This paper presents a probabilistic approach for online dense reconstruction using a single monocular camera moving through the environment. Compared to spatial stereo, depth estimation from motion stereo is challenging due to insufficient parallaxes, visual scale changes, pose errors, etc. We utilize both the spatial and temporal correlations of consecutive depth estimates to increase the robustness and accuracy of monocular depth estimation. An online, recursive, probabilistic scheme to compute depth estimates, with corresponding covariances and inlier probability expectations, is proposed in this work. We integrate the obtained depth hypotheses into dense 3D models in an uncertainty-aware way. We show the effectiveness and efficiency of our proposed approach by comparing it with state-of-the-art methods in the TUM RGB-D SLAM & ICL-NUIM dataset. Online indoor and outdoor experiments are also presented for performance demonstration.

[1]  Roland Siegwart,et al.  Continuous-time trajectory optimization for online UAV replanning , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[2]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Shahram Izadi,et al.  MonoFusion: Real-time 3D reconstruction of small scenes with a single web camera , 2013, 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[4]  Dimitrios G. Kottas,et al.  Consistency Analysis and Improvement of Vision-aided Inertial Navigation , 2014, IEEE Transactions on Robotics.

[5]  Nicholas Roy,et al.  Multi-level mapping: Real-time dense monocular SLAM , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[6]  Vijay Kumar,et al.  Tightly-coupled monocular visual-inertial fusion for autonomous flight of rotorcraft MAVs , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[7]  Yi Lin,et al.  Autonomous aerial navigation using monocular visual‐inertial fusion , 2018, J. Field Robotics.

[8]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[9]  Margarita Chli,et al.  Real-time local 3D reconstruction for aerial inspection using superpixel expansion , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Siddhartha S. Srinivasa,et al.  Chisel: Real Time Large Scale 3D Reconstruction Onboard a Mobile Device using Spatially Hashed Signed Distance Fields , 2015, Robotics: Science and Systems.

[11]  Torsten Sattler,et al.  3D Modeling on the Go: Interactive 3D Reconstruction of Large-Scale Scenes on Mobile Devices , 2015, 2015 International Conference on 3D Vision.

[12]  Andrew J. Davison,et al.  DTAM: Dense tracking and mapping in real-time , 2011, 2011 International Conference on Computer Vision.

[13]  Stefan Leutenegger,et al.  ElasticFusion: Real-time dense SLAM and light source estimation , 2016, Int. J. Robotics Res..

[14]  Anastasios I. Mourikis,et al.  High-precision, consistent EKF-based visual-inertial odometry , 2013, Int. J. Robotics Res..

[15]  Davide Scaramuzza,et al.  REMODE: Probabilistic, monocular dense reconstruction in real time , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[16]  Siddhartha S. Srinivasa,et al.  CHOMP: Gradient optimization techniques for efficient motion planning , 2009, 2009 IEEE International Conference on Robotics and Automation.

[17]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[18]  Shaojie Shen,et al.  Monocular Visual–Inertial State Estimation With Online Initialization and Camera–IMU Extrinsic Calibration , 2017, IEEE Transactions on Automation Science and Engineering.

[19]  Andreas Geiger,et al.  Efficient Large-Scale Stereo Matching , 2010, ACCV.

[20]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[21]  Daniel Cremers,et al.  Real-Time Dense Geometry from a Handheld Camera , 2010, DAGM-Symposium.

[22]  Javier Civera,et al.  DPPTAM: Dense piecewise planar tracking and mapping from a monocular sequence , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[23]  Carlos Hernández,et al.  Video-based, real-time multi-view stereo , 2011, Image Vis. Comput..

[24]  Matthias Nießner,et al.  Real-time 3D reconstruction at scale using voxel hashing , 2013, ACM Trans. Graph..

[25]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[26]  Frank Dellaert,et al.  IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation , 2015, Robotics: Science and Systems.