H3K79me2/3 controls enhancer–promoter interactions and activation of the pan-cancer stem cell marker PROM1/CD133 in MLL-AF4 leukemia cells

[1]  B. Povinelli,et al.  Discovery of a CD10 negative B-progenitor in human fetal life identifies unique ontogeny-related developmental programs. , 2019, Blood.

[2]  R. Pieters,et al.  Outcome of Infants Younger Than 1 Year With Acute Lymphoblastic Leukemia Treated With the Interfant-06 Protocol: Results From an International Phase III Randomized Study. , 2019, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  Jiajia Lin,et al.  The promotion of nanoparticle delivery to two populations of gastric cancer stem cells by CD133 and CD44 antibodies. , 2019, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[4]  P. Vyas,et al.  DOT1L inhibition reveals a distinct subset of enhancers dependent on H3K79 methylation , 2019, Nature Communications.

[5]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[6]  K. Sneppen,et al.  Theoretical analysis of Polycomb-Trithorax systems predicts that poised chromatin is bistable and not bivalent , 2019, Nature Communications.

[7]  E. Eyras,et al.  CD133-directed CAR T-cells for MLL leukemia: on-target, off-tumor myeloablative toxicity , 2019, Leukemia.

[8]  I. Varela,et al.  Unraveling the cellular origin and clinical prognostic markers of infant B-cell acute lymphoblastic leukemia using genome-wide analysis , 2019, Haematologica.

[9]  F. Gutiérrez-Agüera,et al.  NG2 antigen is a therapeutic target for MLL-rearranged B-cell acute lymphoblastic leukemia , 2019, Leukemia.

[10]  G. Liou,et al.  CD133 as a regulator of cancer metastasis through the cancer stem cells. , 2019, The international journal of biochemistry & cell biology.

[11]  S. Lomvardas,et al.  Lhx2/Ldb1-mediated trans interactions regulate olfactory receptor choice , 2018, Nature.

[12]  Christoph Hafemeister,et al.  Comprehensive integration of single cell data , 2018, bioRxiv.

[13]  Kashish Chetal,et al.  The Human Cell Atlas bone marrow single-cell interactive web portal , 2018, Experimental hematology.

[14]  Y. Zhai,et al.  TanCAR T cells targeting CD19 and CD133 efficiently eliminate MLL leukemic cells , 2018, Leukemia.

[15]  Thomas Gregor,et al.  Dynamic interplay between enhancer-promoter topology and gene activity , 2018, Nature Genetics.

[16]  K. Ottersbach,et al.  The fetal liver lymphoid-primed multipotent progenitor provides the prerequisites for the initiation of t(4;11) MLL-AF4 infant leukemia , 2018, Haematologica.

[17]  J. Telenius,et al.  A tissue-specific self-interacting chromatin domain forms independently of enhancer-promoter interactions , 2017, Nature Communications.

[18]  E. Clappier,et al.  The MLL recombinome of acute leukemias in 2017 , 2017, Leukemia.

[19]  Thomas A Milne,et al.  Mouse models of MLL leukemia: recapitulating the human disease. , 2017, Blood.

[20]  M. Konopleva,et al.  MLL-AF4 Spreading Identifies Binding Sites that Are Distinct from Super-Enhancers and that Govern Sensitivity to DOT1L Inhibition in Leukemia , 2017, Cell reports.

[21]  Salam A. Assi,et al.  Instructive Role of MLL-Fusion Proteins Revealed by a Model of t(4;11) Pro-B Acute Lymphoblastic Leukemia. , 2016, Cancer cell.

[22]  P. Houghton,et al.  Venetoclax responses of pediatric ALL xenografts reveal sensitivity of MLL-rearranged leukemia. , 2016, Blood.

[23]  D. Ellison,et al.  Multi-organ Mapping of Cancer Risk , 2016, Cell.

[24]  Howard Y. Chang,et al.  Lineage-specific and single cell chromatin accessibility charts human hematopoiesis and leukemia evolution , 2016, Nature Genetics.

[25]  P. Vyas,et al.  Genetically distinct leukemic stem cells in human CD34− acute myeloid leukemia are arrested at a hemopoietic precursor-like stage , 2016, The Journal of experimental medicine.

[26]  Wendy A. Bickmore,et al.  Shh and ZRS enhancer colocalisation is specific to the zone of polarising activity , 2016, Development.

[27]  R. Stam,et al.  Revisiting the biology of infant t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia. , 2015, Blood.

[28]  K. Coombes,et al.  MLL-Rearranged Acute Lymphoblastic Leukemias Activate BCL-2 through H3K79 Methylation and Are Sensitive to the BCL-2-Specific Antagonist ABT-199 , 2015, Cell reports.

[29]  J. Telenius,et al.  Multiplexed analysis of chromosome conformation at vastly improved sensitivity , 2015, Nature Methods.

[30]  Cheng Cheng,et al.  The landscape of somatic mutations in Infant MLL rearranged acute lymphoblastic leukemias , 2015, Nature Genetics.

[31]  David A. Orlando,et al.  Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. , 2014, Cell reports.

[32]  K. Helin,et al.  Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. , 2014, Molecular cell.

[33]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[34]  N. Brockdorff,et al.  Chromatin Sampling—An Emerging Perspective on Targeting Polycomb Repressor Proteins , 2013, PLoS genetics.

[35]  W. Choi,et al.  The MLL recombinome of acute leukemias in 2013 , 2013, Leukemia.

[36]  Thomas A. Milne,et al.  RUNX1 Is a Key Target in t(4;11) Leukemias that Contributes to Gene Activation through an AF4-MLL Complex Interaction , 2013, Cell reports.

[37]  Sarah Filippi,et al.  Perturbation of fetal liver hematopoietic stem and progenitor cell development by trisomy 21 , 2012, Proceedings of the National Academy of Sciences.

[38]  T. Milne,et al.  Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis , 2012, Cancers.

[39]  Anthony B Mak,et al.  The mixed lineage leukemia (MLL) fusion-associated gene AF4 promotes CD133 transcription. , 2012, Cancer research.

[40]  Lars Bullinger,et al.  MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. , 2011, Cancer cell.

[41]  C. Pui,et al.  Biology, risk stratification, and therapy of pediatric acute leukemias: an update. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[42]  Kevin K Dobbin,et al.  Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. , 2010, Blood.

[43]  T. Dingermann,et al.  The AF4.MLL fusion protein is capable of inducing ALL in mice without requirement of MLL.AF4. , 2010, Blood.

[44]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[45]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[46]  P. Kearns,et al.  Expression of CD133 on leukemia-initiating cells in childhood ALL. , 2009, Blood.

[47]  Richard A Young,et al.  Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. , 2008, Genes & development.

[48]  A. Chinnaiyan,et al.  A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. , 2007, Blood.

[49]  M. Loh,et al.  Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children's Cancer Group (CCG). , 2007, Blood.

[50]  M. D. Boer,et al.  The MLL recombinome of acute leukemias , 2006, Leukemia.

[51]  J. Hess,et al.  Leukemogenic MLL fusion proteins bind across a broad region of the Hox a9 locus, promoting transcription and multiple histone modifications. , 2005, Cancer research.

[52]  Renato Paro,et al.  Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. , 2004, Annual review of genetics.

[53]  F. Prósper,et al.  The composition of leukapheresis products impacts on the hematopoietic recovery after autologous transplantation independently of the mobilization regimen , 2002, Transfusion.

[54]  C. Bartram,et al.  The acute lymphoblastic leukaemia cell line SEM with t(4;11) chromosomal rearrangement is biphenotypic and responsive to interleukin‐7 , 1994, British journal of haematology.

[55]  A. Sandberg,et al.  Cytogenetic characterization of putative human myeloblastic leukemia cell lines (ML-1, -2, and -3): origin of the cells. , 1986, Cancer research.

[56]  A. Morley,et al.  RCH-ACV: a lymphoblastic leukemia cell line with chromosome translocation 1;19 and trisomy 8. , 1986, Cancer Genetics and Cytogenetics.

[57]  S. Kaur,et al.  What is B-Cell Acute Lymphoblastic Leukemia ? , 2020 .

[58]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[59]  Tabiwang N. Arrey,et al.  The leukemogenic AF4–MLL fusion protein causes P-TEFb kinase activation and altered epigenetic signatures , 2011, Leukemia.

[60]  Jinlan Pan,et al.  Acute Myeloid Leukemia , 2021, Cancers in the Urban Environment.

[61]  A. Órfão,et al.  Immunophenotypic characteristics of PB-mobilised CD34+ hematopoietic progenitor cells. , 2001, Journal of biological regulators and homeostatic agents.

[62]  T. Haferlach,et al.  Impact of CD133 (AC133) and CD90 expression analysis for acute leukemia immunophenotyping. , 2001, Haematologica.