Parameter subset selection techniques for problems in mathematical biology

Patient-specific models for diagnostics and treatment planning require reliable parameter estimation and model predictions. Mathematical models of physiological systems are often formulated as systems of nonlinear ordinary differential equations with many parameters and few options for measuring all state variables. Consequently, it can be difficult to determine which parameters can reliably be estimated from available data. This investigation highlights pitfalls associated with practical parameter identifiability and subset selection. The latter refer to the process associated with selecting a subset of parameters that can be identified uniquely by parameter estimation protocols. The methods will be demonstrated using five examples of increasing complexity, as well as with patient-specific model predicting arterial blood pressure. This study demonstrates that methods based on local sensitivities are preferable in terms of computational cost and model fit when good initial parameter values are available, but that global methods should be considered when initial parameter value is not known or poorly understood. For global sensitivity analysis, Morris screening provides results in terms of parameter sensitivity ranking at a much lower computational cost.

[1]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[2]  Moritz Diehl,et al.  CasADi -- A symbolic package for automatic differentiation and optimal control , 2012 .

[3]  Louis B. Rall,et al.  Automatic Differentiation: Techniques and Applications , 1981, Lecture Notes in Computer Science.

[4]  Julio R. Banga,et al.  Novel global sensitivity analysis methodology accounting for the crucial role of the distribution of input parameters: application to systems biology models , 2012 .

[5]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[6]  R. Bellman,et al.  On structural identifiability , 1970 .

[7]  H. Akaike A new look at the statistical model identification , 1974 .

[8]  John Sibert,et al.  AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models , 2012, Optim. Methods Softw..

[9]  M. Jansen Analysis of variance designs for model output , 1999 .

[10]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[11]  X. Yi On Automatic Differentiation , 2005 .

[12]  C. T. Kelley,et al.  Estimation and identification of parameters in a lumped cerebrovascular model. , 2008, Mathematical biosciences and engineering : MBE.

[13]  David W. Bacon,et al.  Modeling Ethylene/Butene Copolymerization with Multi‐site Catalysts: Parameter Estimability and Experimental Design , 2003 .

[14]  Xiaohua Xia,et al.  On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics , 2011, SIAM Rev..

[15]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[16]  A. Holmberg On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities , 1982 .

[17]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[18]  Mette S. Olufsen,et al.  Modeling the Afferent Dynamics of the Baroreflex Control System , 2013, PLoS Comput. Biol..

[19]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[20]  Zhenzhou Lu,et al.  Monte Carlo simulation for moment-independent sensitivity analysis , 2013, Reliab. Eng. Syst. Saf..

[21]  Moritz Diehl,et al.  ACADO toolkit—An open‐source framework for automatic control and dynamic optimization , 2011 .

[22]  Marisa C Eisenberg,et al.  A confidence building exercise in data and identifiability: Modeling cancer chemotherapy as a case study. , 2017, Journal of theoretical biology.

[23]  Stefano Tarantola,et al.  Sensitivity analysis practices: Strategies for model-based inference , 2006, Reliab. Eng. Syst. Saf..

[24]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[25]  Michael J. Kurtz,et al.  Selection of model parameters for off-line parameter estimation , 2004, IEEE Transactions on Control Systems Technology.

[26]  Harvey Thomas Banks,et al.  Parameter Selection and Verification Techniques Based on Global Sensitivity Analysis Illustrated for an HIV Model , 2016, SIAM/ASA J. Uncertain. Quantification.

[27]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[28]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[29]  Luc Devroye,et al.  Sample-based non-uniform random variate generation , 1986, WSC '86.

[30]  Gilles Clermont,et al.  An ensemble of models of the acute inflammatory response to bacterial lipopolysaccharide in rats: results from parameter space reduction. , 2008, Journal of theoretical biology.

[31]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[32]  Mark K Transtrum,et al.  Geometry of nonlinear least squares with applications to sloppy models and optimization. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[34]  J. Jacquez,et al.  Numerical parameter identifiability and estimability: Integrating identifiability, estimability, and optimal sampling design , 1985 .

[35]  Johannes Jaeger,et al.  Parameter estimation and determinability analysis applied to Drosophila gap gene circuits , 2008, BMC Systems Biology.

[36]  B. Iooss,et al.  A Review on Global Sensitivity Analysis Methods , 2014, 1404.2405.

[37]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[38]  Seung-Hi Lee,et al.  An approach to dual-stage servo design in computer disk drives , 2004, IEEE Trans. Control. Syst. Technol..

[39]  Daniel A Beard,et al.  Identifying physiological origins of baroreflex dysfunction in salt-sensitive hypertension in the Dahl SS rat. , 2010, Physiological genomics.

[40]  Jesper Mehlsen,et al.  Patient-specific modelling of head-up tilt. , 2014, Mathematical medicine and biology : a journal of the IMA.

[41]  J. Haslinger,et al.  5. On Automatic Differentiation of Computer Programs , 2003 .

[42]  Mette S Olufsen,et al.  A practical approach to parameter estimation applied to model predicting heart rate regulation , 2013, Journal of mathematical biology.

[43]  Seth Sullivant,et al.  Structural Identifiability of Viscoelastic Mechanical Systems , 2013, PloS one.

[44]  Emanuele Borgonovo,et al.  Model emulation and moment-independent sensitivity analysis: An application to environmental modelling , 2012, Environ. Model. Softw..

[45]  Joaquim R. R. A. Martins,et al.  AN AUTOMATED METHOD FOR SENSITIVITY ANALYSIS USING COMPLEX VARIABLES , 2000 .

[46]  C. T. Kelley,et al.  Patient-specific modeling of cardiovascular and respiratory dynamics during hypercapnia. , 2013, Mathematical biosciences.

[47]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .