Design and Analysis of a W-Band Metasurface-Based Computational Imaging System

We design and numerically analyze a coherent computational imaging system that utilizes a sparse detector array of planar, frequency-diverse, metasurface antennas designed to operate over the <inline-formula> <tex-math notation="LaTeX">$W$ </tex-math></inline-formula>-band frequency range (75–110 GHz). Each of the metasurface antennas consists of a parallel plate waveguide, into which a center coaxial feed is inserted into the lower plate, launching a cylindrical guided wave. A dense array of metamaterial resonators patterned into the upper plate couples energy from the waveguide to free space radiative modes. The resonance frequency of each element, determined by its specific geometry, can be positioned anywhere within the <inline-formula> <tex-math notation="LaTeX">$W$ </tex-math></inline-formula>-band. The geometry of each element is chosen to produce a resonance frequency selected randomly from the <inline-formula> <tex-math notation="LaTeX">$W$ </tex-math></inline-formula>-band. Since a random subset of elements is resonant at any given frequency, the metasurface antenna forms a sequence of spatially diverse radiation patterns as a function of the excitation frequency. We analyze the metasurface aperture as an imaging system, optimizing key parameters relevant to image quality and resolution, including: aperture size; density and quality factor of the metamaterial resonators; number of detectors and their spatial distribution; bandwidth; and the number of frequency samples. A point-spread function analysis is used to compare the metasurface imager with traditional synthetic aperture radar. The singular value spectrum corresponding to the system transfer function and the mean-square-error associated with reconstructed images are both metrics used to characterize the system performance.

[1]  L. L. Wald,et al.  A Phased Array Echoplanar Imaging System for fMRI , 1998, NeuroImage.

[2]  Sebastian Hantscher,et al.  Through-Wall Imaging With a 3-D UWB SAR Algorithm , 2008, IEEE Signal Processing Letters.

[3]  David R. Smith,et al.  Dynamic metamaterial aperture for microwave imaging , 2015 .

[4]  Atam P. Dhawan Medical Image Analysis , 2003 .

[5]  J. P. Ruina,et al.  Some Early Developments in Synthetic Aperture Radar Systems , 1962, IRE Transactions on Military Electronics.

[6]  David R. Smith,et al.  Resolution of the Frequency Diverse Metamaterial Aperture Imager , 2015 .

[7]  Daniel L Marks,et al.  Compressive holography. , 2009, Optics express.

[8]  David R. Smith,et al.  Comprehensive simulation platform for a metamaterial imaging system. , 2015, Applied optics.

[9]  David R. Smith,et al.  Metamaterial apertures for coherent computational imaging on the physical layer. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[11]  David R. Smith,et al.  Printed Aperiodic Cavity for Computational and Microwave Imaging , 2016, IEEE Microwave and Wireless Components Letters.

[12]  N. Nikolova Microwave Imaging for Breast Cancer , 2011, IEEE Microwave Magazine.

[13]  Vinh Ngoc Nguyen,et al.  Design, Analysis, And Characterization Of Metamaterial Quasi-Optical Components For Millimeter-Wave Automotive Radar , 2013 .

[14]  Thomas E. Hall,et al.  Three-dimensional millimeter-wave imaging for concealed weapon detection , 2001 .

[15]  David R. Smith,et al.  Metamaterial microwave holographic imaging system. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  David R. Smith,et al.  Spatially resolving antenna arrays using frequency diversity. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  John D. Hunt,et al.  Metamaterials for Computational Imaging , 2013 .

[18]  Joseph N Mait,et al.  Millimeter-wave compressive holography. , 2010, Applied optics.

[19]  David A. Wikner,et al.  Polarimetric passive millimeter-wave sensing , 2001, SPIE Defense + Commercial Sensing.

[20]  W. Kiser,et al.  Simulation, acquisition and analysis of passive millimeter-wave images in remote sensing applications. , 2008, Optics express.

[21]  David R. Smith,et al.  Design and Simulation of a Frequency-Diverse Aperture for Imaging of Human-Scale Targets , 2016, IEEE Access.

[22]  L. Tian,et al.  Scanning-free compressive holography for object localization with subpixel accuracy. , 2012, Optics letters.

[23]  Christopher A. Martin,et al.  Passive millimeter-wave imaging for airborne and security applications , 2003, SPIE Defense + Commercial Sensing.

[24]  Michael Boyarsky,et al.  Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies , 2016 .

[25]  Reza Zoughi,et al.  Modeling of surface hairline-crack detection in metals under coatings using an open-ended rectangular waveguide , 1997 .

[26]  David R. Smith,et al.  Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures. , 2016, Optics express.

[27]  David R. Smith,et al.  Metamaterial Apertures for Computational Imaging , 2013, Science.

[28]  G. R. Huguenin,et al.  Focal plane imaging systems for millimeter wavelengths , 1993 .

[29]  Sergey Kharkovsky,et al.  MILLIMETER WAVE HOLOGRAPHICAL INSPECTION OF HONEYCOMB COMPOSITES , 2008 .

[30]  Michael Grüninger,et al.  Introduction , 2002, CACM.

[31]  Thomas E. Hall,et al.  Active millimeter-wave standoff and portal imaging techniques for personnel screening , 2009, 2009 IEEE Conference on Technologies for Homeland Security.

[32]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.