Modeling and administration scheduling of fractional-order pharmacokinetic systems

Fractional-order dynamical systems were recently introduced in the field of pharmacokinetics where they proved powerful tools for modeling the absorption, disposition, distribution and excretion of drugs which are liable to anomalous diffusion, deep tissue trapping and other nonlinear phenomena. In this paper we present several ways to simulate such fractional-order pharmacokinetic models and we evaluate their accuracy and complexity on a fractional-order pharmacokinetic model of Amiodarone, an anti-arrhythmic drug. We then propose an optimal administration scheduling scheme and evaluate it on a population of patients.

[1]  C. Lubich,et al.  Fractional linear multistep methods for Abel-Volterra integral equations of the second kind , 1985 .

[2]  Panos Macheras,et al.  The Changing Face of the Rate Concept in Biopharmaceutical Sciences: From Classical to Fractal and Finally to Fractional , 2011, Pharmaceutical Research.

[3]  Richard Magin,et al.  Fractional kinetics in multi-compartmental systems , 2010, Journal of Pharmacokinetics and Pharmacodynamics.

[4]  Yong Wang,et al.  State space approximation for general fractional order dynamic systems , 2014, Int. J. Syst. Sci..

[5]  I. Petráš Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab , 2011 .

[6]  Hironori A. Fujii,et al.  H(infinity) optimized wave-absorbing control - Analytical and experimental results , 1993 .

[7]  C. Lubich Discretized fractional calculus , 1986 .

[8]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[9]  Roberto Garrappa,et al.  Trapezoidal methods for fractional differential equations: Theoretical and computational aspects , 2015, Math. Comput. Simul..

[10]  Pantelis Sopasakis,et al.  Stabilising model predictive control for discrete-time fractional-order systems , 2016, Autom..

[11]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[12]  Hassan Hassanzadeh,et al.  Comparison of different numerical Laplace inversion methods for engineering applications , 2007, Appl. Math. Comput..

[13]  Mohsen Zayernouri,et al.  Fractional Adams-Bashforth/Moulton methods: An application to the fractional Keller-Segel chemotaxis system , 2016, J. Comput. Phys..

[14]  Roberto Garrappa,et al.  Numerical Evaluation of Two and Three Parameter Mittag-Leffler Functions , 2015, SIAM J. Numer. Anal..

[15]  Xiaozhong Liao,et al.  Rational approximation for fractional-order system by particle swarm optimization , 2012 .

[16]  Pantelis Sopasakis,et al.  Robust model predictive control for discrete-time fractional-order systems , 2015, 2015 23rd Mediterranean Conference on Control and Automation (MED).

[17]  J. A. Tenreiro Machado,et al.  COMPARISON OF DIFFERENT ORDERS PADÉ FRACTIONAL ORDER PD05 CONTROL ALGORITHM IMPLEMENTATIONS , 2006 .

[18]  A. Dokoumetzidis,et al.  IVIVC of controlled release formulations: physiological-dynamical reasons for their failure. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[19]  Juraj Valsa,et al.  Approximate formulae for numerical inversion of Laplace transforms , 1998 .

[20]  L Seipel,et al.  Effect of amiodarone and sotalol on the defibrillation threshold in comparison to patients without antiarrhythmic drug treatment. , 1999, International journal of cardiology.

[21]  C. Halijak,et al.  Approximation of Fractional Capacitors (1/s)^(1/n) by a Regular Newton Process , 1964 .

[22]  Tadeusz Kaczorek,et al.  Selected Problems of Fractional Systems Theory , 2011 .

[23]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .

[24]  Roberto Garrappa,et al.  On linear stability of predictor–corrector algorithms for fractional differential equations , 2010, Int. J. Comput. Math..

[25]  B. Onaral,et al.  Fractal system as represented by singularity function , 1992 .

[26]  A. N. Stokes,et al.  An Improved Method for Numerical Inversion of Laplace Transforms , 1982 .

[27]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .