Solar Wind Sputtering Rates of Small Bodies and Ion Mass Spectrometry Detection of Secondary Ions

Solar wind interactions with the surfaces of asteroids and small moons eject atoms and molecules from the uppermost several nanometers of regolith grains through a process called sputtering. A small fraction of the sputtered species, called secondary ions, leave the surface in an ionized state, and these are diagnostic of the surface composition. Detection of secondary ions using ion mass spectrometry (IMS) provides a powerful method of analysis due to low backgrounds and high instrument sensitivities. However, the sputtered secondary ion yield and the atomic composition of the surface are not 1‐to‐1 correlated. Thus, relative yield fractions based on experimental measurements are needed to convert measured spectra to surface composition. Here available experimental results are combined with computationally derived solar wind sputtering yields to estimate secondary ion fluxes from asteroid‐sized bodies in the solar system. The Monte Carlo simulation code SDTrimSP is used to estimate the total sputtering yield due to solar wind ion bombardment for a diverse suite of meteorite and lunar soil compositions. Experimentally measured relative secondary ion yields are analyzed to determine the abundance of refractory species (Mg+, Al+, Ca+, and Fe+) relative to Si+, and it is shown that relative abundances indicate whether a body is primitive or has undergone significant geologic reprocessing. Finally, estimates of the sputtered secondary ion fluxes are used to determine the IMS sensitivity required to adequately resolve major element ratios for nominal orbital geometries.

[1]  G. Wehner,et al.  Investigation of sputtering effects on the moon's surface eighth quarterly status report, 25 jan. - 24 apr. 1965 , 1965 .

[2]  G. K. Wehner,et al.  Investigation of sputtering effects on the moon's surface Final report, 25 Apr. 1963 - 2 Jun. 1967 , 1967 .

[3]  K. Wittmaack,et al.  Secondary ion emission from silicon and silicon oxide , 1975 .

[4]  J. Bohdansky,et al.  Light‐ion sputtering yields for molybdenum and gold at low energies , 1977 .

[5]  J. Roth,et al.  Data on Low Energy Light Ion Sputtering , 1979 .

[6]  C. Pillinger,et al.  A METHOD FOR THE IDENTIFICATION AND ELIMINATION OF CONTAMINATION DURING CARBON ISOTOPIC ANALYSES OF EXTRATERRESTRIAL SAMPLES , 1983 .

[7]  A. J. Easton SEVEN NEW BULK CHEMICAL ANALYSES OF AUBRITES , 1985 .

[8]  Robert E. Johnson,et al.  Sputtering of ices: a review , 1986 .

[9]  R. Z. Sagdeev,et al.  Chemical composition of small bodies of the solar system determined from the effects of solar-wind interaction with their surfaces , 1988 .

[10]  C. Russell,et al.  Upstream waves at Mars: Phobos observations , 1990 .

[11]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[12]  Robert E. Johnson Energetic Charged-Particle Interactions with Atmospheres and Surfaces , 1990 .

[13]  Robert E. Johnson,et al.  Lunar surface: Sputtering and secondary ion mass spectrometry , 1991 .

[14]  David J. McComas,et al.  Lunar surface composition and solar wind‐Induced secondary ion mass spectrometry , 1991 .

[15]  R. Housley XPS Studies of the Surface Chemistry of Lunar Highlands Regolith , 1992 .

[16]  Carle M. Pieters,et al.  Optical effects of space weathering: The role of the finest fraction , 1993 .

[17]  P. D. Feldman,et al.  Detection of an oxygen atmosphere on Jupiter's moon Europa , 1995, Nature.

[18]  Bruce Fegley,et al.  The Planetary Scientist's Companion , 1998 .

[19]  W. Lewis,et al.  Europa's surface composition and sputter‐produced ionosphere , 1998 .

[20]  Theodore E. Madey,et al.  Desorption of alkali atoms and ions from oxide surfaces: Relevance to origins of Na and K in atmospheres of Mercury and the Moon , 1998 .

[21]  L. McFadden,et al.  Surface modification of olivine by H+ and He+ bombardment , 1999 .

[22]  G. P. Forêts,et al.  Sputtering of grains in C-type shocks , 2000 .

[23]  T. Coplen Atomic Weights of the Elements , 2003 .

[24]  Bruce Hapke,et al.  Space weathering from Mercury to the asteroid belt , 2001 .

[25]  Thomas M. Orlando,et al.  Far-out surface science: radiation-induced surface processes in the solar system , 2002 .

[26]  K. Keil,et al.  Meteoritic parent bodies: Their number and identification , 2002 .

[27]  P. De Bièvre,et al.  Atomic weights of the elements. Review 2000 (IUPAC Technical Report) , 2009 .

[28]  L. Starukhina Computer Simulation of Sputtering of Lunar Regolith by Solar Wind Protons: Contribution to Change of Surface Composition and to Hydrogen Flux at the Lunar Poles , 2003 .

[29]  L. Nittler,et al.  Bulk element compositions of meteorites: A guide for interpreting remote-sensing geochemical measurements of planets and asteroids , 2004 .

[30]  K. Wittmaack Reliability of a popular simulation code for predicting sputtering yields of solids and ranges of low-energy ions , 2004 .

[31]  J. E. Richards,et al.  The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation , 2004 .

[32]  J. Lorincik,et al.  Quantitative study of oxygen enhancement of sputtered ion yields. I. Argon ion bombardment of a silicon surface with O2 flood , 2004 .

[33]  Y. Saito,et al.  Estimation of picked-up lunar ions for future compositional remote SIMS analyses of the lunar surface , 2005 .

[34]  Robert E. Johnson,et al.  Monte Carlo model of sputtering and other ejection processes within a regolith , 2005 .

[35]  Andrew Steele,et al.  Comet 81P/Wild 2 Under a Microscope , 2006, Science.

[36]  D. Ming,et al.  Chemical Diversity along the Traverse of the Rover Spirit at Gusev Crater , 2006 .

[37]  T. Mccoy,et al.  Systematics and Evaluation of Meteorite Classification , 2006 .

[38]  Wolfgang Eckstein,et al.  Sputtering by Particle Bombardment, Experiments and Computer Calculations from Threshold to MeV Energies , 2007 .

[39]  J. Cooper,et al.  The spatial morphology of Europa's near-surface O2 atmosphere , 2007 .

[40]  U. Rohner,et al.  The lunar exosphere: The sputtering contribution , 2007 .

[41]  Reid F. Cooper,et al.  Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior , 2008, Nature.

[42]  P. Wurz,et al.  Asteroid exosphere: A simulation for the ROSETTA flyby targets (2867) Steins and (21) Lutetia , 2008 .

[43]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[44]  V. Shelegedin,et al.  Synthesis and characterization of peptides after high-energy impact on the icy matrix: Preliminary step for further UV-induced formation , 2009 .

[45]  C. Dukes,et al.  Irradiation of olivine by 4 keV He+: Simulation of space weathering by the solar wind , 2009 .

[46]  Hisayoshi Shimizu,et al.  First direct detection of ions originating from the Moon by MAP‐PACE IMA onboard SELENE (KAGUYA) , 2009 .

[47]  R E Johnson,et al.  Cassini Finds an Oxygen–Carbon Dioxide Atmosphere at Saturn’s Icy Moon Rhea , 2010, Science.

[48]  P. R. Harris,et al.  Sputtering of lunar regolith simulant by protons and singly and multicharged Ar ions at solar wind energies , 2011 .

[49]  Olivier Witasse,et al.  A model of interaction of Phobos' surface with the martian environment , 2011 .

[50]  P. R. Harris,et al.  Solar-Wind Protons and Heavy Ions Sputtering of Lunar Surface Materials , 2011 .

[51]  C. Dukes,et al.  Laboratory studies on the sputtering contribution to the sodium atmospheres of Mercury and the Moon , 2011 .

[52]  T. Hashimoto,et al.  Incipient Space Weathering Observed on the Surface of Itokawa Dust Particles , 2011, Science.

[53]  A. Glocer,et al.  Flux estimates of ions from the lunar exosphere , 2012 .

[54]  J. Berthelier,et al.  In situ mass spectrometry during the Lutetia flyby , 2012 .

[55]  R. Bowden,et al.  The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets , 2012, Science.

[56]  Michelle F. Thomsen,et al.  Detection of exospheric O2+ at Saturn's moon Dione , 2012, Geophysical Research Letters.

[57]  D. Glenar,et al.  Metallic species, oxygen and silicon in the lunar exosphere: Upper limits and prospects for LADEE measurements , 2012 .

[58]  Tomoki Nakamura,et al.  Oxygen three-isotope ratios of silicate particles returned from asteroid Itokawa by the Hayabusa spacecraft: A strong link with equilibrated LL chondrites , 2013 .

[59]  Robert E. Johnson Surface Boundary Layer Atmospheres , 2013 .

[60]  A. Mutzke,et al.  Simulation of ion beam sputtering with SDTrimSP, TRIDYN and SRIM , 2014 .

[61]  J. Maurer,et al.  The Neutral Mass Spectrometer on the Lunar Atmosphere and Dust Environment Explorer Mission , 2014 .

[62]  D. Rickman,et al.  Anorthite sputtering by H+ and Arq+ (q = 1–9) at solar wind velocities , 2014 .

[63]  Pascal Lee PADME (Phobos And Deimos & Mars Environment): A Proposed NASA Discovery Mission , 2014 .

[64]  Raul A. Baragiola,et al.  Hydrogen implantation in silicates: The role of solar wind in SiOH bond formation on the surfaces of airless bodies in space , 2014 .

[65]  William E. McClintock,et al.  Seasonal Variations in Mercury's Dayside Calcium Exosphere , 2014 .

[66]  Andrew R. Poppe,et al.  Martian planetary heavy ion sputtering of Phobos , 2014 .

[67]  C. Dukes,et al.  The lunar surface-exosphere connection: Measurement of secondary-ions from Apollo soils , 2015 .

[68]  Butler Hine,et al.  PADME (Phobos And Deimos and Mars Environment): A Proposed NASA Discovery Mission to Investigate the Two Moons of Mars , 2015 .

[69]  P. Mahaffy,et al.  Variability of helium, neon, and argon in the lunar exosphere as observed by the LADEE NMS instrument , 2015 .

[70]  J. Berthelier,et al.  Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko , 2015 .

[71]  A. Mutzke,et al.  Simulation of coupled sputter-diffusion effects , 2016 .

[72]  E. Gibson,et al.  The Origin of Amino Acids in Lunar Regolith Samples , 2016 .