Probabilistic inference of reaction rate parameters from summary statistics
暂无分享,去创建一个
[1] Gianluca Iaccarino,et al. Padé-Legendre approximants for uncertainty analysis with discontinuous response surfaces , 2009, J. Comput. Phys..
[2] Todd A. Oliver,et al. Bayesian analysis of syngas chemistry models , 2013 .
[3] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[4] Hai Wang,et al. Combustion kinetic model uncertainty quantification, propagation and minimization , 2015 .
[5] J. Warnatz,et al. Resolution of gas phase and surface combustion chemistry into elementary reactions , 1992 .
[6] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[7] Omar M. Knio,et al. Spectral Methods for Uncertainty Quantification , 2010 .
[8] Stanley P. Sander,et al. NASA Data Evaluation: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies , 2014 .
[9] Jan S. Hesthaven,et al. Padé-Legendre Interpolants for Gibbs Reconstruction , 2006, J. Sci. Comput..
[10] Habib N. Najm,et al. Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..
[11] Alison S. Tomlin,et al. Determining predictive uncertainties and global sensitivities for large parameter systems: A case study for N-butane oxidation , 2015 .
[12] O. Ernst,et al. ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .
[13] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[14] Michael Frenklach,et al. Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method—combustion of methane , 1992 .
[15] Michael Frenklach,et al. Optimization of combustion kinetic models on a feasible set , 2011 .
[16] Guilhem Lacaze,et al. Modeling Auto-Ignition Transients in Reacting Diesel Jets , 2015 .
[17] D. Balding,et al. Approximate Bayesian computation in population genetics. , 2002, Genetics.
[18] H. Najm,et al. Inference of reaction rate parameters based on summary statistics from experiments , 2017 .
[19] J. Naylor,et al. Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .
[20] John K Kruschke,et al. Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.
[21] David A. Sheen,et al. Combustion kinetic modeling using multispecies time histories in shock-tube oxidation of heptane , 2011 .
[22] Tamás Varga,et al. Determination of rate parameters based on both direct and indirect measurements , 2012 .
[23] R. Ghanem,et al. Uncertainty propagation using Wiener-Haar expansions , 2004 .
[24] N. Wiener. The Homogeneous Chaos , 1938 .
[25] E. Jaynes. Probability theory : the logic of science , 2003 .
[26] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[27] R. Ghanem,et al. Quantifying uncertainty in chemical systems modeling , 2004 .
[28] Jefferson W. Tester,et al. Incorporation of parametric uncertainty into complex kinetic mechanisms: Application to hydrogen oxidation in supercritical water , 1998 .
[29] Habib N. Najm,et al. Data free inference with processed data products , 2016, Stat. Comput..
[30] Wing Tsang,et al. Kinetics of H atom attack on unsaturated hydrocarbons using spectral uncertainty propagation and minimization techniques , 2013 .
[31] Peter J Seiler,et al. Collaborative data processing in developing predictive models of complex reaction systems , 2004 .
[32] R. Preuss,et al. Maximum entropy and Bayesian data analysis: Entropic prior distributions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[33] Habib N. Najm,et al. Data-free inference of the joint distribution of uncertain model parameters , 2010, J. Comput. Phys..
[34] Jakub Dlabka,et al. Evaluation of Combustion Mechanisms Using Global Uncertainty and Sensitivity Analyses: A Case Study for Low‐Temperature Dimethyl Ether Oxidation , 2014 .
[35] O. L. Maître,et al. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .
[36] A. Hindmarsh,et al. CVODE, a stiff/nonstiff ODE solver in C , 1996 .
[37] Thorsten Gerber,et al. Handbook Of Mathematical Functions , 2016 .
[38] Yvon Maday,et al. Padé–Jacobi Filtering for Spectral Approximations of Discontinuous Solutions , 2003, Numerical Algorithms.
[39] Qing Liu,et al. A note on Gauss—Hermite quadrature , 1994 .
[40] Doreen Eichel,et al. Data Analysis A Bayesian Tutorial , 2016 .
[41] Tamás Turányi,et al. Determination of the uncertainty domain of the Arrhenius parameters needed for the investigation of combustion kinetic models , 2012, Reliab. Eng. Syst. Saf..
[42] Cosmin Safta,et al. Uncertainty quantification of reaction mechanisms accounting for correlations introduced by rate rules and fitted Arrhenius parameters , 2013 .
[43] L. Tierney,et al. Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .
[44] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[45] Michael Frenklach,et al. Sensitivity analysis and parameter estimation in dynamic modeling of chemical kinetics , 1983 .
[46] Christian Genest,et al. Combining Probability Distributions: A Critique and an Annotated Bibliography , 1986 .
[47] Habib N. Najm,et al. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .
[48] O P Le Maître,et al. Spectral stochastic uncertainty quantification in chemical systems , 2004 .
[49] T. Loredo. From Laplace to Supernova SN 1987A: Bayesian Inference in Astrophysics , 1990 .
[50] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[51] Ronald K. Hanson,et al. Shock tube study of the reaction hydrogen atom + oxygen .fwdarw. hydroxyl + oxygen atom using hydroxyl laser absorption , 1990 .
[52] C. Genest. A Characterization Theorem for Externally Bayesian Groups , 1984 .
[53] Habib N. Najm,et al. Multi-Resolution-Analysis Scheme for Uncertainty Quantification in Chemical Systems , 2007, SIAM J. Sci. Comput..
[54] H. Najm,et al. Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .
[55] R. D. Berry,et al. DATA-FREE INFERENCE OF UNCERTAIN PARAMETERS IN CHEMICAL MODELS , 2014 .
[56] Alison S. Tomlin,et al. The role of sensitivity and uncertainty analysis in combustion modelling , 2013 .
[57] Carol S. Woodward,et al. Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..
[58] Michael Frenklach,et al. Transforming data into knowledge—Process Informatics for combustion chemistry , 2007 .
[59] V. L. Orkin,et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18 , 2015 .
[60] J. N. Kapur. Maximum-entropy models in science and engineering , 1992 .
[61] J. Berger,et al. The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .
[62] R. Ghanem,et al. Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .
[63] Cosmin Safta,et al. TChem - A Software Toolkit for the Analysis of Complex Kinetic Models , 2020 .
[64] Faming Liang,et al. Statistical and Computational Inverse Problems , 2006, Technometrics.
[65] J. Warnatz. Rate Coefficients in the C/H/O System , 1984 .