Probabilistic inference of reaction rate parameters from summary statistics

This investigation tackles the probabilistic parameter estimation problem involving the Arrhenius parameters for the rate coefficient of the chain branching reaction H + O2 → OH + O. This is achieved in a Bayesian inference framework that uses indirect data from the literature in the form of summary statistics by approximating the maximum entropy solution with the aid of approximate bayesian computation. The summary statistics include nominal values and uncertainty factors of the rate coefficient, obtained from shock-tube experiments performed at various initial temperatures. The Bayesian framework allows for the incorporation of uncertainty in the rate coefficient of a secondary reaction, namely OH + H2 → H2O + H, resulting in a consistent joint probability density on Arrhenius parameters for the two rate coefficients. It also allows for uncertainty quantification in numerical ignition predictions while conforming with the published summary statistics. The method relies on probabilistic reconstruction of the unreported data, OH concentration profiles from shock-tube experiments, along with the unknown Arrhenius parameters. The data inference is performed using a Markov chain Monte Carlo sampling procedure that relies on an efficient adaptive quadrature in estimating relevant integrals needed for data likelihood evaluations. For further efficiency gains, local Padé–Legendre approximants are used as surrogates for the time histories of OH concentration, alleviating the need for 0-D auto-ignition simulations. The reconstructed realisations of the missing data are used to provide a consensus joint posterior probability density on the unknown Arrhenius parameters via probabilistic pooling. Uncertainty quantification analysis is performed for stoichiometric hydrogen–air auto-ignition computations to explore the impact of uncertain parameter correlations on a range of quantities of interest.

[1]  Gianluca Iaccarino,et al.  Padé-Legendre approximants for uncertainty analysis with discontinuous response surfaces , 2009, J. Comput. Phys..

[2]  Todd A. Oliver,et al.  Bayesian analysis of syngas chemistry models , 2013 .

[3]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[4]  Hai Wang,et al.  Combustion kinetic model uncertainty quantification, propagation and minimization , 2015 .

[5]  J. Warnatz,et al.  Resolution of gas phase and surface combustion chemistry into elementary reactions , 1992 .

[6]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[7]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[8]  Stanley P. Sander,et al.  NASA Data Evaluation: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies , 2014 .

[9]  Jan S. Hesthaven,et al.  Padé-Legendre Interpolants for Gibbs Reconstruction , 2006, J. Sci. Comput..

[10]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[11]  Alison S. Tomlin,et al.  Determining predictive uncertainties and global sensitivities for large parameter systems: A case study for N-butane oxidation , 2015 .

[12]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[13]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[14]  Michael Frenklach,et al.  Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method—combustion of methane , 1992 .

[15]  Michael Frenklach,et al.  Optimization of combustion kinetic models on a feasible set , 2011 .

[16]  Guilhem Lacaze,et al.  Modeling Auto-Ignition Transients in Reacting Diesel Jets , 2015 .

[17]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[18]  H. Najm,et al.  Inference of reaction rate parameters based on summary statistics from experiments , 2017 .

[19]  J. Naylor,et al.  Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .

[20]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[21]  David A. Sheen,et al.  Combustion kinetic modeling using multispecies time histories in shock-tube oxidation of heptane , 2011 .

[22]  Tamás Varga,et al.  Determination of rate parameters based on both direct and indirect measurements , 2012 .

[23]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[24]  N. Wiener The Homogeneous Chaos , 1938 .

[25]  E. Jaynes Probability theory : the logic of science , 2003 .

[26]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[27]  R. Ghanem,et al.  Quantifying uncertainty in chemical systems modeling , 2004 .

[28]  Jefferson W. Tester,et al.  Incorporation of parametric uncertainty into complex kinetic mechanisms: Application to hydrogen oxidation in supercritical water , 1998 .

[29]  Habib N. Najm,et al.  Data free inference with processed data products , 2016, Stat. Comput..

[30]  Wing Tsang,et al.  Kinetics of H atom attack on unsaturated hydrocarbons using spectral uncertainty propagation and minimization techniques , 2013 .

[31]  Peter J Seiler,et al.  Collaborative data processing in developing predictive models of complex reaction systems , 2004 .

[32]  R. Preuss,et al.  Maximum entropy and Bayesian data analysis: Entropic prior distributions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Habib N. Najm,et al.  Data-free inference of the joint distribution of uncertain model parameters , 2010, J. Comput. Phys..

[34]  Jakub Dlabka,et al.  Evaluation of Combustion Mechanisms Using Global Uncertainty and Sensitivity Analyses: A Case Study for Low‐Temperature Dimethyl Ether Oxidation , 2014 .

[35]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[36]  A. Hindmarsh,et al.  CVODE, a stiff/nonstiff ODE solver in C , 1996 .

[37]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[38]  Yvon Maday,et al.  Padé–Jacobi Filtering for Spectral Approximations of Discontinuous Solutions , 2003, Numerical Algorithms.

[39]  Qing Liu,et al.  A note on Gauss—Hermite quadrature , 1994 .

[40]  Doreen Eichel,et al.  Data Analysis A Bayesian Tutorial , 2016 .

[41]  Tamás Turányi,et al.  Determination of the uncertainty domain of the Arrhenius parameters needed for the investigation of combustion kinetic models , 2012, Reliab. Eng. Syst. Saf..

[42]  Cosmin Safta,et al.  Uncertainty quantification of reaction mechanisms accounting for correlations introduced by rate rules and fitted Arrhenius parameters , 2013 .

[43]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[44]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[45]  Michael Frenklach,et al.  Sensitivity analysis and parameter estimation in dynamic modeling of chemical kinetics , 1983 .

[46]  Christian Genest,et al.  Combining Probability Distributions: A Critique and an Annotated Bibliography , 1986 .

[47]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[48]  O P Le Maître,et al.  Spectral stochastic uncertainty quantification in chemical systems , 2004 .

[49]  T. Loredo From Laplace to Supernova SN 1987A: Bayesian Inference in Astrophysics , 1990 .

[50]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[51]  Ronald K. Hanson,et al.  Shock tube study of the reaction hydrogen atom + oxygen .fwdarw. hydroxyl + oxygen atom using hydroxyl laser absorption , 1990 .

[52]  C. Genest A Characterization Theorem for Externally Bayesian Groups , 1984 .

[53]  Habib N. Najm,et al.  Multi-Resolution-Analysis Scheme for Uncertainty Quantification in Chemical Systems , 2007, SIAM J. Sci. Comput..

[54]  H. Najm,et al.  Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .

[55]  R. D. Berry,et al.  DATA-FREE INFERENCE OF UNCERTAIN PARAMETERS IN CHEMICAL MODELS , 2014 .

[56]  Alison S. Tomlin,et al.  The role of sensitivity and uncertainty analysis in combustion modelling , 2013 .

[57]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[58]  Michael Frenklach,et al.  Transforming data into knowledge—Process Informatics for combustion chemistry , 2007 .

[59]  V. L. Orkin,et al.  Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18 , 2015 .

[60]  J. N. Kapur Maximum-entropy models in science and engineering , 1992 .

[61]  J. Berger,et al.  The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .

[62]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[63]  Cosmin Safta,et al.  TChem - A Software Toolkit for the Analysis of Complex Kinetic Models , 2020 .

[64]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[65]  J. Warnatz Rate Coefficients in the C/H/O System , 1984 .