Recovery of a high-pressure phase formed under laser-driven compression

M. G. Gorman ,1,* D. McGonegle,2 S. J. Tracy,3 S. M. Clarke,1 C. A. Bolme ,4 A. E. Gleason ,5 S. J. Ali ,1 S. Hok,5 C. W. Greeff ,6 P. G. Heighway ,2 K. Hulpach,7 B. Glam,8 E. Galtier,9 H. J. Lee,9 J. S. Wark ,2 J. H. Eggert,1 J. K. Wicks,7 and R. F. Smith 1 1Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94500, USA 2Department of Physics, Clarendon Laboratory, Parks Road, University of Oxford, Oxford OX1 3PU, United Kingdom 3Earth and Planets Laboratory, Carnegie Institution of Washington, Washington DC 20015, USA 4Shock and Detonation Physics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA 5Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA 6Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA 7Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA 8Soreq Nuclear Research Center, Yavne 81800, Israel 9Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

[1]  D. Kovalev,et al.  Spall Strength of Shock-Heated Zirconium and Phase Diagram of Its High-Pressure Polymorphic Modification , 2020 .

[2]  B. Remington,et al.  Nonisentropic Release of a Shocked Solid. , 2019, Physical review letters.

[3]  Gilbert W. Collins,et al.  Identification of Phase Transitions and Metastability in Dynamically Compressed Antimony Using Ultrafast X-Ray Diffraction. , 2019, Physical review letters.

[4]  Gilbert W. Collins,et al.  Recovery of metastable dense Bi synthesized by shock compression , 2019, Applied Physics Letters.

[5]  H. J. Lee,et al.  Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth , 2018, Scientific Reports.

[6]  T. Germann,et al.  Orientation dependent spall strength of tantalum single crystals , 2018, Acta Materialia.

[7]  S. Niezgoda,et al.  Modeling the α/ω thermal stability in shocked Zr: A coupling between dislocation removal and phase transformation , 2018, Acta Materialia.

[8]  Turab Lookman,et al.  Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning , 2018, npj Computational Materials.

[9]  T. Duffy,et al.  In situ X-Ray Diffraction of Shock-Compressed Fused Silica. , 2018, Physical review letters.

[10]  S. Glenzer,et al.  Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions , 2017 .

[11]  David R. Jones,et al.  The α-ω phase transition in shock-loaded titanium , 2017 .

[12]  D. Dolan,et al.  Compression Freezing Kinetics of Water to Ice VII. , 2017, Physical review letters.

[13]  C. Wolverton,et al.  Creating Binary Cu–Bi Compounds via High-Pressure Synthesis: A Combined Experimental and Theoretical Study , 2017 .

[14]  Jian Lv,et al.  Erratum: Materials discovery at high pressures , 2017 .

[15]  S. Goedecker,et al.  Discovery of a Superconducting Cu-Bi Intermetallic Compound by High-Pressure Synthesis. , 2016, Angewandte Chemie.

[16]  N. Gunkelmann,et al.  Influence of phase transition on shock-induced spallation in nanocrystalline iron , 2015 .

[17]  L. Rapp,et al.  Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion , 2015, Nature Communications.

[18]  Jun Chen,et al.  Molecular dynamics studies of the roles of microstructure and thermal effects in spallation of aluminum , 2015 .

[19]  E. Cerreta,et al.  Isothermal annealing of shocked zirconium: Stability of the two-phase α/ω microstructure , 2014, 1411.3298.

[20]  T. Lookman,et al.  The kinetics of the ω to α phase transformation in Zr, Ti: Analysis of data from shock-recovered samples and atomistic simulations , 2014 .

[21]  R. F. Smith,et al.  Ramp compression of diamond to five terapascals , 2014, Nature.

[22]  T. Lookman,et al.  The influence of peak shock stress on the high pressure phase transformation in Zr , 2014 .

[23]  Levente Balogh,et al.  Stability of the two-phase (α/ω) microstructure of shocked zirconium , 2014 .

[24]  Gilbert W. Collins,et al.  Time-dependence of the alpha to epsilon phase transformation in iron , 2013 .

[25]  David J. Erskine,et al.  Heterogeneous flow and brittle failure in shock-compressed silicon , 2013 .

[26]  S. Tencé,et al.  CoBi3: a binary cobalt-bismuth compound and superconductor. , 2013, Angewandte Chemie.

[27]  R. Needs,et al.  Thermodynamically stable phases of carbon at multiterapascal pressures. , 2012, Physical review letters.

[28]  Yanming Ma,et al.  Crystal Structures and Exotic Behavior of Magnesium under Pressure , 2010 .

[29]  Chris J Pickard,et al.  Aluminium at terapascal pressures. , 2010, Nature materials.

[30]  D. Klug,et al.  Structural transformations in carbon under extreme pressure: beyond diamond. , 2009, The Journal of chemical physics.

[31]  R. Albers,et al.  Zirconium under pressure: phase transitions and thermodynamics , 2006 .

[32]  C. Greeff Phase changes and the equation of state of Zr , 2005 .

[33]  G. T. Gray,et al.  Experimental constraints on the phase diagram of elemental zirconium , 2005 .

[34]  David K. Bradley,et al.  Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility , 2004 .

[35]  J. Zimmer,et al.  Crystal symmetry and the reversibility of martensitic transformations , 2004, Nature.

[36]  S. Saxena,et al.  High-pressure and high-temperature in situ X-ray diffraction study of iron and corundum to 68 GPa using an internally heated diamond anvil cell , 1998 .

[37]  Edgar Dutra Zanotto The applicability of the general theory of phase transformations to glass crystallization , 1996 .

[38]  M. Weinberg Glass-formation and crystallization kinetics , 1996 .

[39]  J. Angus,et al.  Low-Pressure, Metastable Growth of Diamond and "Diamondlike" Phases , 1988, Science.

[40]  S. Papson,et al.  “Model” , 1981 .

[41]  Y. Vohra,et al.  Kinetics of phase transformations in Ti, Zr and Hf under static and dynamic pressures , 1978 .

[42]  T. Evans,et al.  A study of the transformation of diamond to graphite , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  J. C. Jamieson,et al.  Crystal Structures of Titanium, Zirconium, and Hafnium at High Pressures , 1963, Science.

[44]  R. H. Wentorf,et al.  Two New Forms of Silicon , 1963, Science.

[45]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[46]  David Jones,et al.  High power , 1994, Nature.