Sequential transmutation of prismatic dislocations during {112¯2

[1]  X. Ou,et al.  Atomic-level study of {101¯1} deformation twinning in pure Ti and Ti-5at.% Al alloy , 2022, International Journal of Plasticity.

[2]  H. Ye,et al.  Removing basal-dissociated 〈c+a〉 dislocations by {101¯2} deformation twinning in magnesium alloys , 2021 .

[3]  M. Sui,et al.  A half-shear-half-shuffle mechanism and the single-layer twinning dislocation for {112¯2}〈112¯3¯〉 mode in hexagonal close-packed titanium , 2021 .

[4]  R. Mccabe,et al.  Three-dimensional atomic scale characterization of {112¯2} twin boundaries in titanium , 2021 .

[5]  A. Dmitriev,et al.  Molecular dynamics study of dislocation-twin boundary interaction in titanium subjected to scratching , 2021 .

[6]  C. Tomé,et al.  Interactions between 〈a〉 dislocations and three-dimensional {112¯2} twin in Ti , 2020 .

[7]  Peng Chen,et al.  Dislocation ↔ twin transmutations during interaction between prismatic slip and {101¯1} twin in magnesium , 2020 .

[8]  Peng Chen,et al.  Misfit strain induced phase transformation at a basal/prismatic twin boundary in deformation of magnesium , 2019, Computational Materials Science.

[9]  Peng Chen,et al.  Transitory phase transformations during {101¯2} twinning in titanium , 2019, Acta Materialia.

[10]  X. Fang,et al.  Transmission electron microscopy study of 〈c+a〉 dislocations within 112¯2 twin in deformed titanium , 2019, Materials Characterization.

[11]  Peng Chen,et al.  Dislocation absorption and transmutation at {101¯2} twin boundaries in deformation of magnesium , 2019, Acta Materialia.

[12]  M. Sui,et al.  Interaction of {112¯2} twin variants in hexagonal close-packed titanium , 2019, Journal of Materials Science & Technology.

[13]  Yanyao Jiang,et al.  Negligible effect of twin-slip interaction on hardening in deformation of a Mg-3Al-1Zn alloy , 2018, Materials Science and Engineering: A.

[14]  R. Mccabe,et al.  Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars , 2017 .

[15]  M. Mills,et al.  Atomistic modeling of dislocation interactions with twin boundaries in Ti , 2017 .

[16]  A. Wilkinson,et al.  Growth of {112¯2} twins in titanium: A combined experimental and modelling investigation of the local state of deformation , 2017 .

[17]  Z. Wu,et al.  Magnesium interatomic potential for simulating plasticity and fracture phenomena , 2015 .

[18]  V. Bulatov,et al.  Automated identification and indexing of dislocations in crystal interfaces , 2012 .

[19]  Huseyin Sehitoglu,et al.  Energy barriers associated with slip–twin interactions , 2011 .

[20]  M. Niewczas Lattice correspondence during twinning in hexagonal close-packed crystals , 2010 .

[21]  I. Beyerlein,et al.  On the interaction between slip dislocations and twins in HCP Zr , 2009 .

[22]  K. Lu,et al.  Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale , 2009, Science.

[23]  Michael I. Baskes,et al.  Modified embedded-atom method interatomic potentials for Ti and Zr , 2006 .

[24]  A. Serra,et al.  Modelling the motion of {112¯2} twinning dislocations in the HCP metals , 2005 .

[25]  Y. Mishin,et al.  Interatomic potentials for atomistic simulations of the Ti-Al system , 2003, cond-mat/0306298.

[26]  A. Serra,et al.  Computer simulation of screw dislocation interactions with twin boundaries in h.c.p. metals , 1995 .

[27]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[28]  J. K. Lee,et al.  Deformation twinning in h.c.p. metals and alloys , 1991 .

[29]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[30]  M. Yoo Slip, twinning, and fracture in hexagonal close-packed metals , 1981 .

[31]  B. Bilby,et al.  The theory of the crystallography of deformation twinning , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[32]  Huseyin Sehitoglu,et al.  Energy of slip transmission and nucleation at grain boundaries , 2011 .

[33]  A. Stukowski Modelling and Simulation in Materials Science and Engineering Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool , 2009 .

[34]  A. Serra,et al.  Twins as barriers to basal slip in hexagonal-close-packed metals , 2002 .

[35]  F. Frank,et al.  On deformation by twinning , 1955 .