Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii

The energetic metabolism of photosynthetic organisms is profoundly influenced by state transitions and cyclic electron flow around photosystem I. The former involve a reversible redistribution of the light‐harvesting antenna between photosystem I and photosystem II and optimize light energy utilization in photosynthesis whereas the latter process modulates the photosynthetic yield. We have used the wild‐type and three mutant strains of the green alga Chlamydomonas reinhardtii—locked in state I (stt7), lacking the photosystem II outer antennae (bf4) or accumulating low amounts of cytochrome b6f complex (A‐AUU)—and measured electron flow though the cytochrome b6f complex, oxygen evolution rates and fluorescence emission during state transitions. The results demonstrate that the transition from state 1 to state 2 induces a switch from linear to cyclic electron flow in this alga and reveal a strict cause–effect relationship between the redistribution of antenna complexes during state transitions and the onset of cyclic electron flow.

[1]  W. Bilger,et al.  Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer , 2004, Photosynthesis Research.

[2]  F. Wollman State transitions reveal the dynamics and flexibility of the photosynthetic apparatus , 2001, The EMBO journal.

[3]  G. Finazzi,et al.  State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. , 1999, Biochimica et biophysica acta.

[4]  J. Rochaix,et al.  Isolation and Characterization of Photoautotrophic Mutants ofChlamydomonas reinhardtii Deficient in State Transition* , 1999, The Journal of Biological Chemistry.

[5]  G. Finazzi,et al.  Analysis of the Nucleus-Encoded and Chloroplast-Targeted Rieske Protein by Classic and Site-Directed Mutagenesis of Chlamydomonas , 1999, Plant Cell.

[6]  F. Zito,et al.  The Qo site of cytochrome b6f complexes controls the activation of the LHCII kinase , 1999, The EMBO journal.

[7]  P. Joliot,et al.  In vivo Measurements of Photosynthetic Activity: Methods , 1998 .

[8]  J. Rochaix,et al.  The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas , 1998, Advances in Photosynthesis and Respiration.

[9]  G. Finazzi,et al.  Function-directed mutagenesis of the cytochrome b6f complex in Chlamydomonas reinhardtii: involvement of the cd loop of cytochrome b6 in quinol binding to the Q(o) site. , 1997, Biochemistry.

[10]  F. Wollman,et al.  Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii , 1996 .

[11]  I. Ohad,et al.  Activation/Deactivation Cycle of Redox-controlled Thylakoid Protein Phosphorylation , 1995, The Journal of Biological Chemistry.

[12]  X. Chen,et al.  The initiation codon determines the efficiency but not the site of translation initiation in Chlamydomonas chloroplasts. , 1995, The Plant cell.

[13]  A. Trebst,et al.  QUINONE BINDING SITES ON CYTOCHOROME b/c COMPLEXES * , 1995, Photochemistry and photobiology.

[14]  J. Allen,et al.  Protein phosphorylation in regulation of photosynthesis. , 1992, Biochimica et biophysica acta.

[15]  F. Wollman,et al.  Lateral redistribution of cytochrome b6/f complexes along thylakoid membranes upon state transitions. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[16]  J Bennett,et al.  Protein phosphorylation in green plant chloroplasts , 1991 .

[17]  J. Lavergne,et al.  Restricted diffusion in photosynthetic membranes. , 1991, Trends in biochemical sciences.

[18]  P. Gans,et al.  ATP control on state transitions in vivo in Chlamydomonas reinhardtii , 1990 .

[19]  F. Wollman,et al.  Changes in phosphorylation of thylakoid membrane proteins in light-harvesting complex mutants from Chlamydomonas reinhardtii , 1988 .

[20]  F. Wollman,et al.  Studies on kinase-controiled state transitions in Photosystem II and b_6 f mutants from Chlamydomonas reinhardtii which lack quinone-binding proteins , 2020 .

[21]  F. Wollman,et al.  Correlation between changes in light energy distribution and changes in thylakoid membrane polypeptide phosphorylation in Chlamydomonas reinhardtii , 1984, The Journal of cell biology.

[22]  P. Bennoun Evidence for a respiratory chain in the chloroplast. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[23]  K. Steinback,et al.  Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems , 1981, Nature.

[24]  F. Wollman,et al.  Ultrastructure of thylakoid membranes in C. reinhardtii: evidence for variations in the partition coefficient of the light-harvesting complex-containing particles upon membrane fracture. , 1981, Archives of biochemistry and biophysics.

[25]  P. Horton,et al.  Light-dependent quenching of chlorophyll fluorescence in pea chloroplasts induced by adenosine 5'-triphosphate. , 1981, Biochimica et biophysica acta.

[26]  Pierre Joliot,et al.  Une nouvelle méthode spectrophotométrique destinée à l'étude des réactions photosynthétiques , 1980 .

[27]  P. Bennoun Réoxydation du quencher de fluorescence “Q” en présence de 3-(3,4-dichlorophényl)-1,1-diméthylurée , 1970 .

[28]  P. Bennoun [Reoxidation of the fluorescence quencher "Q" in the presence of 3-(3,4-- dichlorophenyl)-1,1-dimethylurea]. , 1970, Biochimica et biophysica acta.