The quadratic isoperimetric inequality for mapping tori of free group automorphisms I: Positive automorphisms

If $F$ is a finitely generated free group and $\phi$ is a positive automorphism of $F$ then $F\rtimes_\phi Z$ satisfies a quadratic isoperimetric inequality.

[1]  M. Sapir,et al.  Groups with small Dehn functions and bipartite chord diagrams , 2004, math/0411174.

[2]  A. Martino,et al.  Free-by-cyclic groups have solvable conjugacy problem , 2004 .

[3]  Peter Brinkmann Dynamics of Free Group Automorphisms , 2003, math/0308199.

[4]  M. Bestvina The topology of $out(F_n)$ , 2003, math/0304293.

[5]  Polynomial Dehn Functions and the Length of Asynchronously Automatic Structures , 2002 .

[6]  Charles F. Miller,et al.  Combinatorial Group Theory , 2002 .

[7]  N. Macura Quadratic isoperimetric inequality for mapping tori of polynomially growing automorphisms of free groups , 2000 .

[8]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[9]  Peter Brinkmann Hyperbolic automorphisms of free groups , 1999, math/9906008.

[10]  M. Handel,et al.  Mapping tori of free group automorphisms are coherent , 1999, math/9905209.

[11]  M. Handel,et al.  The Tits alternative for Out (F~n) I: Dynamics of exponentially-growing automorphisms , 1997, math/9712217.

[12]  M. Handel,et al.  Solvable Subgroups of Out(Fn) are Virtually Abelian , 1997, math/9712219.

[13]  M. Handel,et al.  The Tits alternative for Out(Fn) II: A Kolchin type theorem , 1997, math/9712218.

[14]  Rita Gitik,et al.  On the Combination Theorem for Negatively Curved Groups , 1996, Int. J. Algebra Comput..

[15]  Z. Sela The Nielsen-Thurston classification and automorphisms of a free group I , 1996 .

[16]  S. M. Gersten,et al.  THE OPTIMAL ISOPERIMETRIC INEQUALITY FOR TORUS BUNDLES OVER THE CIRCLE , 1996 .

[17]  P. Papasoglu On the asymptotic cone of groups satisfying a quadratic isoperimetric inequality , 1996 .

[18]  B. Leeb 3-manifolds with(out) metrics of nonpositive curvature , 1994, dg-ga/9410002.

[19]  S. Gersten The automorphism group of a free group is not a (0) group , 1994 .

[20]  David B. A. Epstein,et al.  Word processing in groups , 1992 .

[21]  Mladen Bestvina,et al.  Train tracks and automorphisms of free groups , 1992 .

[22]  J. M. Alonso INEGALITES ISOPERIMETRIQUES ET QUASI-ISOMETRIES , 1990 .

[23]  Steven A. Bleiler,et al.  Automorphisms of Surfaces after Nielsen and Thurston , 1988 .

[24]  Daryl Cooper,et al.  Automorphisms of free groups have finitely generated fixed point sets , 1987 .

[25]  Valerie Isham,et al.  Non‐Negative Matrices and Markov Chains , 1983 .

[26]  Egbert R. Van Kampen On Some Lemmas in the Theory of Groups , 1933 .