A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit
暂无分享,去创建一个
[1] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[2] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[3] Nanbu,et al. Theory of collision algorithms for gases and plasmas based on the boltzmann equation and the landau-fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[4] D. L. Book,et al. Convergent Classical Kinetic Equation for a Plasma , 1963 .
[5] E. Rutherford,et al. The scattering of alpha and beta particles by matter and the structure of the atom , 1911 .
[6] Lorenzo Pareschi,et al. Spectral methods for the non cut-off Boltzmann equation and numerical grazing collision limit , 2010, Numerische Mathematik.
[7] Radjesvarane Alexandre,et al. On the Landau approximation in plasma physics , 2004 .
[8] Steven G. Johnson,et al. The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.
[9] Yiwen Ma,et al. Mandible Swing Approach for Excision of Tumors from Parapharyngeal Space , 2008 .
[10] Irene M. Gamba,et al. SHOCK AND BOUNDARY STRUCTURE FORMATION BY SPECTRAL-LAGRANGIAN METHODS FOR THE INHOMOGENEOUS BOLTZMANN TRANSPORT EQUATION * , 2010 .
[11] Laurent Desvillettes,et al. On asymptotics of the Boltzmann equation when the collisions become grazing , 1992 .
[12] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[13] Jeffrey Haack. A hybrid OpenMP and MPI implementation of a conservative spectral method for the Boltzmann equation , 2013 .
[14] Lorenzo Pareschi,et al. Numerical Solution of the Boltzmann Equation I: Spectrally Accurate Approximation of the Collision Operator , 2000, SIAM J. Numer. Anal..
[15] Irene M. Gamba,et al. High performance computing with a conservative spectral Boltzmann solver , 2012, 1211.0540.
[16] Sergej Rjasanow,et al. Numerical solution of the Boltzmann equation on the uniform grid , 2002, Computing.
[17] T. Takizuka,et al. A binary collision model for plasma simulation with a particle code , 1977 .
[18] Stéphane Cordier,et al. Conservative and Entropy Decaying Numerical Scheme for the Isotropic Fokker-Planck-Landau Equation , 1998 .
[19] Alexander Bobylev. Expansion of the Boltzmann collision integral in a Landau series , 1975 .
[20] S. Rjasanow,et al. Fast deterministic method of solving the Boltzmann equation for hard spheres , 1999 .
[21] Alexander V. Bobylev,et al. Monte Carlo methods and their analysis for Coulomb collisions in multicomponent plasmas , 2013, J. Comput. Phys..
[22] Irene M. Gamba,et al. Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states , 2009, J. Comput. Phys..
[23] G. Toscani,et al. Fast spectral methods for the Fokker-Planck-Landau collision operator , 2000 .
[24] William M. MacDonald,et al. Fokker-Planck Equation for an Inverse-Square Force , 1957 .
[25] Lorenzo Pareschi,et al. A Fourier spectral method for homogeneous boltzmann equations , 1996 .
[26] E. Rutherford,et al. The scattering of α and β particles by matter and the structure of the atom , 2012 .
[27] C. Cercignani. The Boltzmann equation and its applications , 1988 .
[28] K. Nanbu,et al. THEORY OF CUMULATIVE SMALL-ANGLE COLLISIONS IN PLASMAS , 1997 .
[29] Cédric Villani,et al. Contribution à l'étude mathématique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasmas , 1998 .
[30] Cédric Villani,et al. On a New Class of Weak Solutions to the Spatially Homogeneous Boltzmann and Landau Equations , 1998 .
[31] Pierre Degond,et al. THE FOKKER-PLANCK ASYMPTOTICS OF THE BOLTZMANN COLLISION OPERATOR IN THE COULOMB CASE , 1992 .