Algorithimic Aspects of the Consecutive-Ones Property

We survey the consecutive-ones property of binary matrices. Herein, a binary matrix has the consecutive-ones property (C1P) if there is a permutation of its columns that places the 1s consecutively in every row. We provide an overview over connections to graph theory, characterizations, recognition algorithms, and applications such as integer linear programming and solving Set Cover.

[1]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[2]  Rolf Niedermeier,et al.  Approximability and Parameterized Complexity of Consecutive Ones Submatrix Problems , 2007, TAMC.

[3]  Dorothea Wagner,et al.  Solving Geometric Covering Problems by Data Reduction , 2004, ESA.

[4]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[5]  Stephan Olariu,et al.  The Ultimate Interval Graph Recognition Algorithm? (Extended Abstract). , 1998, ACM-SIAM Symposium on Discrete Algorithms.

[6]  D. R. Fulkerson,et al.  On balanced matrices , 1974 .

[7]  Kurt Mehlhorn,et al.  Certifying algorithms for recognizing interval graphs and permutation graphs , 2003, SODA '03.

[8]  Kurt M. Anstreicher,et al.  Linear Programming in O([n3/ln n]L) Operations , 1999, SIAM J. Optim..

[9]  Dorothea Wagner,et al.  Station Location - Complexity and Approximation , 2005, ATMOS.

[10]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[11]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[12]  Jeremy P. Spinrad,et al.  An O(n2 algorithm for circular-arc graph recognition , 1993, SODA '93.

[13]  João Meidanis,et al.  On the Consecutive Ones Property , 1998, Discret. Appl. Math..

[14]  Gerhard Reinelt,et al.  The weighted consecutive ones problem for a fixed number of rows or columns , 2003, Oper. Res. Lett..

[15]  Gerhard Reinelt,et al.  Consecutive Ones and a Betweenness Problem in Computational Biology , 1998, IPCO.

[16]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[17]  Michael R. Fellows,et al.  Parameterized Complexity of Stabbing Rectangles and Squares in the Plane , 2009, WALCOM.

[18]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[19]  Mohammad Taghi Hajiaghayi,et al.  A note on the Consecutive Ones Submatrix problem , 2002, Inf. Process. Lett..

[20]  Lawrence T. Kou,et al.  Polynomial Complete Consecutive Information Retrieval Problems , 1977, SIAM J. Comput..

[21]  Stephen J. Wright,et al.  Interior-point methods , 2000 .

[22]  A. Tucker,et al.  A structure theorem for the consecutive 1's property☆ , 1972 .

[23]  Ross M. McConnell Linear-Time Recognition of Circular-Arc Graphs , 2003, Algorithmica.

[24]  Gerhard Reinelt,et al.  The simultaneous consecutive ones problem , 2009, Theor. Comput. Sci..

[25]  Frédéric Gardi,et al.  The Roberts characterization of proper and unit interval graphs , 2007, Discret. Math..

[26]  Dror Rawitz,et al.  Algorithms for capacitated rectangle stabbing and lot sizing with joint set-up costs , 2008, TALG.

[27]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[28]  S. Benzer ON THE TOPOLOGY OF THE GENETIC FINE STRUCTURE. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Salim Haddadi,et al.  Consecutive block minimization is 1.5-approximable , 2008, Inf. Process. Lett..

[30]  Gérard Cornuéjols,et al.  Balanced 0, ±1-matrices, bicoloring and total dual integrality , 1995, Math. Program..

[31]  Bruce Hendrickson,et al.  A Spectral Algorithm for Seriation and the Consecutive Ones Problem , 1999, SIAM J. Comput..

[32]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[33]  A. Tucker,et al.  Matrix characterizations of circular-arc graphs , 1971 .

[34]  Refael Hassin,et al.  Approximation algorithms for hitting objects with straight lines , 1991, Discret. Appl. Math..

[35]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[36]  Clyde L. Monma,et al.  On the Computational Complexity of Integer Programming Problems , 1978 .

[37]  Louxin Zhang,et al.  The Consecutive Ones Submatrix Problem for Sparse Matrices , 2007, Algorithmica.

[38]  Rüdiger Reischuk,et al.  The Complexity of Physical Mapping with Strict Chimerism , 2000, COCOON.

[39]  Somnath Sikdar,et al.  The Parameterized Complexity of the Rectangle Stabbing Problem and Its Variants , 2008, FAW.

[40]  Frits C. R. Spieksma,et al.  Approximation of a Geometric Set Covering Problem , 2001, ISAAC.

[41]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[42]  J. Gathen,et al.  A bound on solutions of linear integer equalities and inequalities , 1978 .

[43]  Dorit S. Hochbaum,et al.  Minimax problems with bitonic matrices , 2002, Networks.

[44]  Wen-Lian Hsu A Simple Test for the Consecutive Ones Property , 2002, J. Algorithms.

[45]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..

[46]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[47]  Haim Kaplan,et al.  Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..

[48]  Gerhard Reinelt,et al.  Polyhedral Aspects of the Consecutive Ones Problem , 2000, COCOON.

[49]  Huimin Zhang,et al.  Computing H/D-exchange speeds of single residues from data of peptic fragments , 2008, SAC '08.

[50]  Anita Schöbel,et al.  Set covering with almost consecutive ones property , 2004, Discret. Optim..

[51]  Martin Middendorf,et al.  On Physical Mapping and the Consecutive Ones Property for Sparse Matrices , 1996, Discret. Appl. Math..

[52]  Nicos Christofides,et al.  Algorithms for large scale set covering problems , 1993, Ann. Oper. Res..

[53]  Haim Kaplan,et al.  A Simpler Linear-Time Recognition of Circular-Arc Graphs , 2006, SWAT.

[54]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[55]  Wen-Lian Hsu,et al.  A Test for the Consecutive Ones Property on Noisy Data - Application to Physical Mapping and Sequence Assembly , 2003, J. Comput. Biol..

[56]  Wen-Lian Hsu On Physical Mapping Algorithms - An Error-Tolerant Test for the Consecutive Ones Property , 1997, COCOON.

[57]  Rajeev Motwani,et al.  K-connected Spanning Subgraphs of Low Degree , 2006, Electron. Colloquium Comput. Complex..

[58]  Ross M. McConnell A certifying algorithm for the consecutive-ones property , 2004, SODA '04.

[59]  Gerhard Reinelt,et al.  Constructing New Facets of the Consecutive Ones Polytope , 2001, Combinatorial Optimization.

[60]  Arthur F. Veinott,et al.  Optimal Capacity Scheduling---II , 1962 .

[61]  Marinus Veldhorst,et al.  Approximation of the Consecutive Ones Matrix Augmentation Problem , 1985, SIAM J. Comput..

[62]  Gérard Cornuéjols,et al.  Balanced matrices , 2006, Discret. Math..

[63]  Rolf H. Möhring,et al.  An Incremental Linear-Time Algorithm for Recognizing Interval Graphs , 1989, SIAM J. Comput..

[64]  Robert D. Carr,et al.  On the red-blue set cover problem , 2000, SODA '00.

[65]  James B. Orlin,et al.  Cyclic Scheduling via Integer Programs with Circular Ones , 1980, Oper. Res..

[66]  Dorit S. Hochbaum,et al.  Cyclical scheduling and multi-shift scheduling: Complexity and approximation algorithms , 2006, Discret. Optim..

[67]  Toshihide Ibaraki,et al.  Constant Ratio Approximation Algorithms for the Rectangle Stabbing Problem and the Rectilinear Partitioning Problem , 2000, J. Algorithms.

[68]  Francis C. M. Lau,et al.  Hamiltonicity of regular graphs and blocks of consecutive ones in symmetric matrices , 2007, Discret. Appl. Math..

[69]  Alan J. Hoffman,et al.  Integral Boundary Points of Convex Polyhedra , 2010, 50 Years of Integer Programming.

[70]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[71]  Matteo Fischetti,et al.  Algorithms for the Set Covering Problem , 2000, Ann. Oper. Res..

[72]  Wen-Lian Hsu,et al.  A Simple Test for Interval Graphs , 1992, WG.

[73]  I. Borosh,et al.  Bounds on positive integral solutions of linear Diophantine equations , 1976 .

[74]  Rolf Niedermeier,et al.  Red-blue covering problems and the consecutive ones property , 2008, J. Discrete Algorithms.

[75]  Mohit Singh,et al.  On the Crossing Spanning Tree Problem , 2004, APPROX-RANDOM.

[76]  Fanica Gavril,et al.  Algorithms on circular-arc graphs , 1974, Networks.

[77]  Wen-Lian Hsu O(M*N) Algorithms for the Recognition and Isomorphism Problems on Circular-Arc Graphs , 1995, SIAM J. Comput..

[78]  Wen-Lian Hsu,et al.  Fast and Simple Algorithms for Recognizing Chordal Comparability Graphs and Interval Graphs , 1999, SIAM J. Comput..

[79]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[80]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[81]  Salim Haddadi A note on the NP–hardness of the consecutive block minimization problem , 2002 .

[82]  Jørgen Bang-Jensen,et al.  Convex-Round and Concave-Round Graphs , 2000, SIAM J. Discret. Math..

[83]  Russell Schwartz,et al.  SNPs Problems, Complexity, and Algorithms , 2001, ESA.

[84]  Wen-Lian Hsu,et al.  PC trees and circular-ones arrangements , 2003, Theor. Comput. Sci..

[85]  Giorgio Gambosi,et al.  Interval routing schemes , 1995, Algorithmica.