A central limit theorem for pulled fronts in a random medium

We consider solutions to a nonlinear reaction diffusion equation when the reaction term varies randomly with respect to the spatial coordinate. The nonlinearity is the KPP type nonlinearity. For a stationary and ergodic medium, and for certain initial condition, the solution develops a moving front that has a deterministic asymptotic speed in the large time limit. The main result of this article is a central limit theorem for the position of the front, in the supercritical regime, if the medium satisfies a mixing condition.

[1]  Richard B. Sowers,et al.  Random Travelling Waves for the KPP Equation with Noise , 1995 .

[2]  Henri Berestycki,et al.  Front propagation in periodic excitable media , 2002 .

[3]  James Nolen,et al.  An Invariance Principle for Random Traveling Waves in One Dimension , 2011, SIAM J. Math. Anal..

[4]  Henri Berestycki,et al.  Generalized travelling waves for reaction-diffusion equations , 2006 .

[5]  Ebert,et al.  Subdiffusive fluctuations of "pulled" fronts with multiplicative noise , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Andrew J. Majda,et al.  Flame fronts in a turbulent combustion model with fractal velocity fields , 1998 .

[7]  Jack Xin,et al.  An Introduction to Fronts in Random Media , 2009 .

[8]  L. Ryzhik,et al.  Traveling waves in a one-dimensional heterogeneous medium , 2009 .

[9]  Jack Xin,et al.  KPP fronts in a one-dimensional random drift , 2008 .

[10]  Jack Xin,et al.  Asymptotic spreading of KPP reactive fronts in incompressible space-time random flows , 2009 .

[11]  Peter Kuchment,et al.  Waves in Periodic and Random Media , 2003 .

[12]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[13]  J. Roquejoffre,et al.  Stability of Generalized Transition Fronts , 2009 .

[14]  L. Roques,et al.  Uniqueness and stability properties of monostable pulsating fronts , 2011 .

[15]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[16]  P. Hall,et al.  Martingale Limit Theory and its Application. , 1984 .

[17]  S. Chatterjee A NEW METHOD OF NORMAL APPROXIMATION , 2006, math/0611213.

[18]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[19]  Wenxian Shen,et al.  Traveling Waves in Diffusive Random Media , 2004 .

[20]  Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  W. Saarloos Front propagation into unstable states , 2003, cond-mat/0308540.

[22]  J. Roquejoffre,et al.  How travelling waves attract the solutions of KPP-type equations , 2012 .

[23]  Panagiotis E. Souganidis,et al.  Homogenization of “Viscous” Hamilton–Jacobi Equations in Stationary Ergodic Media , 2005 .

[24]  R. Tribe A travelling wave solution to the kolmogorov equation with noise , 1996 .