Thermodynamic Mechanism Governing the Coalescence of Conductive Particles in PEDOT:PSS under Laser Irradiation

[1]  Xuewen Wang,et al.  Ultrafast Laser‐Induced Excellent Thermoelectric Performance of PEDOT:PSS Films , 2023, ENERGY & ENVIRONMENTAL MATERIALS.

[2]  S. Ko,et al.  Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation , 2022, Science advances.

[3]  Tiansheng Gan,et al.  Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics , 2022, Nature communications.

[4]  U. Schubert,et al.  Spatial Conductivity Distribution in Thin PEDOT:PSS Films after Laser Microannealing , 2021 .

[5]  W. Hsiao,et al.  Enhanced conductivity of the Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) films using pulsed CO2 laser irradiation , 2021 .

[6]  Jinhuan Sun,et al.  Recent Advances in Polymer-Based Photothermal Materials for Biological Applications , 2020 .

[7]  M. Fahlman,et al.  Microscopic Understanding of the Granular Structure and the Swelling of PEDOT:PSS , 2020 .

[8]  Xuanhe Zhao,et al.  3D printing of conducting polymers , 2020, Nature Communications.

[9]  X. Crispin,et al.  Elastic conducting polymer composites in thermoelectric modules , 2020, Nature Communications.

[10]  Xuanhe Zhao,et al.  Strong adhesion of wet conducting polymers on diverse substrates , 2020, Science Advances.

[11]  Feng Yan,et al.  PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications , 2019, Advanced science.

[12]  Kai Qu,et al.  Pure PEDOT:PSS hydrogels , 2019, Nature Communications.

[13]  J. Ouyang,et al.  Thermoelectric Properties of PEDOT:PSS , 2019, Advanced Electronic Materials.

[14]  Myung-Han Yoon,et al.  Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability , 2018, Nature Communications.

[15]  Geumbee Lee,et al.  Highly Conductive, Stretchable, and Transparent PEDOT:PSS Electrodes Fabricated with Triblock Copolymer Additives and Acid Treatment. , 2018, ACS applied materials & interfaces.

[16]  Juyun Park,et al.  Improving Electrical Conductivity of PEDOT:PSS with Phase Separation by Applying Electric Fields , 2018 .

[17]  X. Crispin,et al.  Article type : Full Paper Understanding the capacitance of PEDOT : PSS , 2017 .

[18]  I. Zozoulenko,et al.  Molecular Dynamics Study of Morphology of Doped PEDOT: From Solution to Dry Phase. , 2017, The journal of physical chemistry. B.

[19]  Jong Won Chung,et al.  A highly stretchable, transparent, and conductive polymer , 2017, Science Advances.

[20]  S. Marrink,et al.  Bulk Heterojunction Morphologies with Atomistic Resolution from Coarse-Grain Solvent Evaporation Simulations , 2017, Journal of the American Chemical Society.

[21]  J. Smiatek,et al.  Coarse-grained simulations of polyelectrolyte complexes: MARTINI models for poly(styrene sulfonate) and poly(diallyldimethylammonium). , 2015, The Journal of chemical physics.

[22]  Taek‐Soo Kim,et al.  Simultaneously Enhancing the Cohesion and Electrical Conductivity of PEDOT:PSS Conductive Polymer Films using DMSO Additives. , 2015, ACS applied materials & interfaces.

[23]  N. Lee,et al.  Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human-Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers. , 2015, ACS nano.

[24]  Jingkun Xu,et al.  Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review , 2015 .

[25]  Jianyong Ouyang,et al.  "Secondary doping" methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices , 2013, Displays.

[26]  Takao Someya,et al.  Ultrathin, highly flexible and stretchable PLEDs , 2013, Nature Photonics.

[27]  I. Fortelný,et al.  Coalescence in quiescent polymer blends with a high content of the dispersed phase , 2012 .

[28]  Isidro Cruz-Cruz,et al.  Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT:PSS thin films , 2010 .

[29]  Udo Lang,et al.  Microscopical Investigations of PEDOT:PSS Thin Films , 2009 .

[30]  J. Dual,et al.  Mechanical characterization of PEDOT : PSS thin films , 2009 .

[31]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[32]  J. Travas-sejdic,et al.  Studies of dopant effects in poly(3,4‐ethylenedi‐oxythiophene) using Raman spectroscopy , 2006 .

[33]  M. Kemerink,et al.  Three-dimensional inhomogeneities in PEDOT:PSS Films , 2004 .

[34]  Yang Yang,et al.  On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment , 2004 .

[35]  F. Touwslager,et al.  Morphology and conductivity of PEDOT/PSS films studied by scanning-tunneling microscopy , 2004 .

[36]  M. Yoshimura,et al.  Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon. , 2001, Journal of the American Chemical Society.

[37]  Hidenori Okuzaki,et al.  Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol , 2009 .