Artifact reduction with diffusion preprocessing for image compression

We evaluate a preprocessing method for image compression artifact reduction based on nonlinear diffusion filtering that we proposed earlier. The method consists of using edge-adaptive diffusion processes before the discrete cosine transform (DCT)-JPEG compression. By using a simple measure for artifact reduction, we show that considerable artifact reduction is achieved with preprocessing at the same bit rate as, and with no greater error than, the original compression. We also show that preprocessing helps to preserve the true contours for image processing applications. An automatic parameter selection for the preprocessing is also proposed, considering the edge histogram of the image and depending on the compression ratio. We test the method for visual quality with extensive subjective measurements. We show that, depending on the image content, preprocessing can significantly improve the visual quality at low bit rates.

[1]  Tamás Szirányi,et al.  Anisotropic diffusion as a preprocessing step for efficient image compression , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[2]  Jesús Malo,et al.  Characterization of the human visual system threshold performance by a weighting function in the Gabor domain , 1997 .

[3]  C.-C. Jay Kuo,et al.  Review of Postprocessing Techniques for Compression Artifact Removal , 1998, J. Vis. Commun. Image Represent..

[4]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Tamás Szirányi,et al.  Non-linear scale-selection for image compression improvement obtained by perceptual distortion criteria , 1999, Proceedings 10th International Conference on Image Analysis and Processing.

[6]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[7]  Andrew B. Watson,et al.  Measurement of visual impairment scales for digital video , 2001, IS&T/SPIE Electronic Imaging.

[8]  Tony F. Chan,et al.  Feature preserving lossy image compression using nonlinear PDEs , 1998, Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225).

[9]  Rachid Deriche,et al.  Recursive filtering and edge tracking: two primary tools for 3D edge detection , 1991, Image Vis. Comput..

[10]  B. M. ter Haar Romeny,et al.  Linear scale-space I-II , 1992 .

[11]  Tamás Szirányi,et al.  Classes of analogic CNN algorithms and their practical use in complex image processing tasks , 1995 .

[12]  Tamás Szirányi,et al.  Comparing Objective and Subjective Quality Results for Compression Pre-processing with Non-linear Diffusion , 2003, Scale-Space.

[13]  Bart M. ter Haar Romeny,et al.  Linear Scale-Space I: Basic Theory , 1994, Geometry-Driven Diffusion in Computer Vision.

[14]  Aggelos K. Katsaggelos,et al.  A rate-distortion optimal video pre-processing algorithm , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[15]  Ken D. Sauer,et al.  Enhancement of low bit-rate coded images using edge detection and estimation , 1991, CVGIP Graph. Model. Image Process..

[16]  Christoph Kuhmünch,et al.  Empirical evaluation of layered video coding schemes , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[17]  Andrew B. Watson,et al.  Perceptual adaptive JPEG coding , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[18]  Olivier Verscheure,et al.  Perceptual quality measure using a spatiotemporal model of the human visual system , 1996, Electronic Imaging.

[19]  Toby Berger,et al.  Rate distortion theory : a mathematical basis for data compression , 1971 .

[20]  Sanjit K. Mitra,et al.  Comparison of the detectability and annoyance value of embedded MPEG-2 artifacts of different type, size, and duration , 2001, IS&T/SPIE Electronic Imaging.

[21]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[22]  Russell M. Mersereau,et al.  Lossy compression of noisy images , 1998, IEEE Trans. Image Process..

[23]  Tamás Szirányi,et al.  Overall picture degradation error for scanned images and the efficiency of character recognition , 1991 .

[24]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[25]  Jani Lainema,et al.  Adaptive deblocking filter , 2003, IEEE Trans. Circuits Syst. Video Technol..

[26]  S. Marsi,et al.  A Simple Algorithm For The Reduction Of Blocking Artifacts In Images And Its Implementation , 1998, International 1998 Conference on Consumer Electronics.

[27]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[28]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[29]  John D. Villasenor,et al.  Visibility of wavelet quantization noise , 1997, IEEE Transactions on Image Processing.

[30]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[31]  Sugato Chakravarty,et al.  Methodology for the subjective assessment of the quality of television pictures , 1995 .

[32]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  J. Morel,et al.  Partial differential equations and image iterative filtering , 1997 .

[34]  H. W. Park,et al.  Blocking effect reduction of JPEG images by signal adaptive filtering , 1998, IEEE Trans. Image Process..

[35]  John G. Apostolopoulos,et al.  Postprocessing for very low bit-rate video compression , 1999, IEEE Trans. Image Process..

[36]  Tony F. Chan,et al.  Feature-preserving lossy image compression using nonlinear PDEs , 1998, Optics & Photonics.

[37]  W. H. Peters,et al.  Improved digital image processing technique to investigate plastic zone formation in steel , 1986, Image Vis. Comput..

[38]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  L. Thurstone A law of comparative judgment. , 1994 .

[40]  G. Kanizsa Subjective contours. , 1976, Scientific American.

[41]  Frederick Mosteller Remarks on the method of paired comparisons: III. A test of significance for paired comparisons when equal standard deviations and equal correlations are assumed , 1951 .

[42]  Luc Florack,et al.  Image Structure , 1997, Computational Imaging and Vision.

[43]  F. Mosteller,et al.  Remarks on the method of paired comparisons: III. A test of significance for paired comparisons when equal standard deviations and equal correlations are assumed , 1951, Psychometrika.