Algorithms for Sat and Upper Bounds on Their Complexity

We survey recent algorithms for the propositional satisfiability problem. In particular, we consider algorithms having the best current worst-case upper bounds on their complexity. We also discuss some related issues: a derandomization of the algorithm of Paturi, Pudlák, Saks, and Zane, the Valiant–Vazirani lemma, and random walk algorithms with the “back button.” Bibliography: 47 titles.

[1]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[2]  Oliver Kullmann,et al.  New Methods for 3-SAT Decision and Worst-case Analysis , 1999, Theor. Comput. Sci..

[3]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[4]  Pavel Pudlák,et al.  Satisfiability Coding Lemma , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[5]  Anna R. Karlin,et al.  Random walks with `back buttons' , 2001, STOC 2000.

[6]  Alan M. Frieze,et al.  Min-wise independent permutations (extended abstract) , 1998, STOC '98.

[7]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[8]  Anna R. Karlin,et al.  Random walks with “back buttons” (extended abstract) , 2000, STOC '00.

[9]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[10]  Toby Walsh,et al.  Towards an Understanding of Hill-Climbing Procedures for SAT , 1993, AAAI.

[11]  Aravind Srinivasan,et al.  Improved Algorithms via Approximations of Probability Distributions , 2000, J. Comput. Syst. Sci..

[12]  Oliver Kullmann,et al.  Investigations on autark assignments , 2000, Discret. Appl. Math..

[13]  Oliver Kullmann,et al.  Deciding propositional tautologies: Algorithms and their complexity , 1997 .

[14]  Alan M. Frieze,et al.  Min-Wise Independent Permutations , 2000, J. Comput. Syst. Sci..

[15]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[16]  Sanjay Gupta,et al.  On Bounded-Probability Operators and C=P , 1993, Inf. Process. Lett..

[17]  Allen Van Gelder,et al.  A perspective on certain polynomial-time solvable classes of satisfiability , 2003, Discret. Appl. Math..

[18]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. 1 , 1967 .

[19]  C.H. Papadimitriou,et al.  On selecting a satisfying truth assignment , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[20]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[21]  Fred S. Annexstein,et al.  On Finding Solutions for Extended Horn Formulas , 1995, Inf. Process. Lett..

[22]  Christos H. Papadimitriou,et al.  On the Greedy Algorithm for Satisfiability , 1992, Information Processing Letters.

[23]  Ewald Speckenmeyer,et al.  Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..

[24]  Carsten Lund,et al.  Hardness of approximations , 1996 .

[25]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[26]  Boris Konev,et al.  APPROXIMATION ALGORITHMS FOR MAX SAT: A BETTER PERFORMANCE RATIO AT THE COST OF A LONGER RUNNING TIME , 1998 .

[27]  Richard Beigel,et al.  Finding maximum independent sets in sparse and general graphs , 1999, SODA '99.

[28]  P. K. Suetin,et al.  Linear Algebra and Geometry , 1989 .

[29]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[30]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.

[31]  Jon M. Kleinberg,et al.  A deterministic (2-2/(k+1))n algorithm for k-SAT based on local search , 2002, Theor. Comput. Sci..

[32]  Rolf Niedermeier,et al.  New Worst-Case Upper Bounds for MAX-2-SAT with Application to MAX-CUT , 2000, Electron. Colloquium Comput. Complex..

[33]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[34]  Rolf Niedermeier,et al.  New Upper Bounds for Maximum Satisfiability , 2000, J. Algorithms.

[35]  D. Sivakumar,et al.  Quasilinear Time Complexity Theory , 1994, STACS.

[36]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[37]  Lance Fortnow,et al.  Resource-Bounded Kolmogorov Complexity Revisited , 1997, STACS.

[38]  Harry R. Lewis,et al.  Renaming a Set of Clauses as a Horn Set , 1978, JACM.

[39]  Evgeny Dantsin,et al.  Deterministic Algorithms for k-SAT Based on Covering Codes and Local Search , 2000, ICALP.

[40]  U. Schöning A probabilistic algorithm for k-SAT and constraint satisfaction problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[41]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[42]  Oliver Kullmann Heuristics for SAT algorithms: Searching for some foundations , 1998 .

[43]  David Eppstein,et al.  3-coloring in time 0(1.3446/sup n/): a no-MIS algorithm , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[44]  Edward A. Hirsch,et al.  Worst-case time bounds for MAX-k-SAT w.r.t. the number of variables using local search , 2000, Electron. Colloquium Comput. Complex..

[45]  Yoshinori Takei,et al.  On permutations with limited independence , 2000, SODA '00.

[46]  Suresh N. Chari Randomness as a computational resource: issues in efficient computation , 1994 .

[47]  Rolf Niedermeier,et al.  Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT , 2003, Discret. Appl. Math..