Application of gradient elasticity to armchair carbon nanotubes: Size effects and constitutive parameters assessment

The central focus of the paper is set on modelling of bending of armchair carbon nanotubes by means of the gradient elasticity theory. Influence of small-size effects on the Young's modulus is investigated. An attempt to determine small size (or nonlocal) parameter employed in the Bernoulli-Euler and Timoshenko gradient formulations is presented. To obtain such a goal, the paper provides an extensive set of molecular structural mechanics simulations of armchair nanotubes with different loading and kinematic boundary conditions. Dependence of the Young's modulus on small size effects is clearly noticed. Based on these results, small scale parameters for the gradient model are identified and limits of the method are pointed out. Results of the study indicate that the widely used theory should be modified to obtain a physically justified and reliable nanobeam model based on Bernoulli-Euler or Timoshenko kinematic assumptions.

[1]  Raffaele Barretta,et al.  Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams , 2017 .

[2]  Bao Wen-Xing,et al.  Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics , 2004 .

[3]  Quan Wang,et al.  A Review on the Application of Nonlocal Elastic Models in Modeling of Carbon Nanotubes and Graphenes , 2012 .

[4]  F. D. Sciarra,et al.  A gradient elasticity model of Bernoulli–Euler nanobeams in non-isothermal environments , 2016 .

[5]  S. Xiao,et al.  Studies of Size Effects on Carbon Nanotubes' Mechanical Properties by Using Different Potential Functions , 2006 .

[6]  K. A. Lazopoulos,et al.  Bending and buckling of thin strain gradient elastic beams , 2010 .

[7]  Tsu-Wei Chou,et al.  Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach , 2004 .

[8]  J. Brnić,et al.  Estimation of material properties of nanocomposite structures , 2013 .

[9]  Chunyu Li,et al.  A STRUCTURAL MECHANICS APPROACH FOR THE ANALYSIS OF CARBON NANOTUBES , 2003 .

[10]  Raffaele Barretta,et al.  Comment on the paper “Exact solution of Eringen’s nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams” by Meral Tuna & Mesut Kirca , 2016 .

[11]  Kausala Mylvaganam,et al.  Important issues in a molecular dynamics simulation for characterising the mechanical properties of carbon nanotubes , 2004 .

[12]  J. Brnić,et al.  Multiscale Modeling of Nanocomposite Structures with Defects , 2013 .

[13]  F. Marotti de Sciarra,et al.  A higher-order Eringen model for Bernoulli–Euler nanobeams , 2016 .

[14]  R. Barretta,et al.  A gradient model for Timoshenko nanobeams , 2014 .

[15]  Luciano Feo,et al.  Application of an enhanced version of the Eringen differential model to nanotechnology , 2016 .

[16]  Marko Canadija,et al.  FE modelling of multi-walled carbon nanotubes , 2009 .

[17]  M. Meo,et al.  Prediction of Young's modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling , 2006 .

[18]  K. Hwang,et al.  Thickness of graphene and single-wall carbon nanotubes , 2006 .

[19]  S. Narendar,et al.  Critical buckling temperature of single-walled carbon nanotubes embedded in a one-parameter elastic medium based on nonlocal continuum mechanics , 2011 .

[20]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[21]  Haiyan Hu,et al.  FLEXURAL WAVE PROPAGATION IN SINGLE-WALLED CARBON NANOTUBES , 2005 .

[22]  N. L. Allinger Molecular Structure: Understanding Steric and Electronic Effects from Molecular Mechanics , 2010 .

[23]  Reza Ansari,et al.  Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain , 2010 .

[24]  Demosthenes Polyzos,et al.  Bending and stability analysis of gradient elastic beams , 2003 .

[25]  Fan Yang,et al.  Experiments and theory in strain gradient elasticity , 2003 .

[26]  Xiaoqiao He,et al.  Vibration of nonlocal Timoshenko beams , 2007 .

[27]  A. Simone,et al.  One-dimensional nonlocal elasticity for tensile single-walled carbon nanotubes : A molecular structural mechanics characterization , 2015 .

[28]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998 .

[29]  Quanshui Zheng,et al.  Size dependence of the thin-shell model for carbon nanotubes. , 2005, Physical review letters.

[30]  Tienchong Chang,et al.  Prediction of chirality- and size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  Paraskevas Papanikos,et al.  Finite element modeling of single-walled carbon nanotubes , 2005 .

[32]  A. Giannakopoulos,et al.  Structural analysis of gradient elastic components , 2007 .

[33]  Raffaele Barretta,et al.  On functionally graded Timoshenko nonisothermal nanobeams , 2016 .

[34]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[35]  J. Brnić,et al.  Elastic properties of nanocomposite materials: influence of carbon nanotube imperfections and interface bonding , 2017 .

[36]  K. Tserpes,et al.  Equivalent beams for carbon nanotubes , 2008 .

[37]  Wenhui Duan,et al.  CALIBRATION OF NONLOCAL SCALING EFFECT PARAMETER FOR FREE VIBRATION OF CARBON NANOTUBES BY MOLECULAR DYNAMICS , 2007 .

[38]  Chien Ming Wang,et al.  Assessment of timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics , 2009 .

[39]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[40]  Tsu-Wei Chou,et al.  Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces , 2003 .

[41]  Hashem Rafii-Tabar,et al.  Computational physics of carbon nanotubes , 2007 .

[42]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[43]  John W. Gillespie,et al.  An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes , 2005 .

[44]  R. Luciano,et al.  Variational formulations for functionally graded nonlocal Bernoulli–Euler nanobeams , 2015 .