A systematic theoretical study of harmonic vibrational frequencies: The ammonium ion NH4+ and other simple molecules

Analytic gradient techniques have been used to predict the harmonic vibrational frequencies of HCN, H2CO, H2O, CH4 and NH4+ at several levels of molecular electronic structure theory. Basis sets of double zeta, double zeta plus polarization, and extended plus polarization quality have been used in conjunction with self‐consistent‐field and configuration interaction methods. For the four spectroscopically characterized molecules, comparison with theory is particularly appropriate because experimental harmonic frequencies are available. For the 16 vibrational frequencies thus considered, the DZ SCF level of theory yields average errors of 166 cm−1 or 8.0%. The DZ+P SCF results are of comparable accuracy, differing on the average from experiment by 176 cm−1 or 8.3%. With the extended basis set, the comparable SCF frequency errors are only slightly less. The explicit incorporation of correlation effects qualitatively improves the agreement between theoretical and experimental harmonic vibrational frequencies....

[1]  I. Csizmadia,et al.  Theoretical Study on the Proton Affinity of Small Molecules Using Gaussian Basis Sets in the LCAO-MO-SCF Framework , 1968 .

[2]  G. F. Mitchell,et al.  A steady-state calculation of molecule abundances in interstellar clouds , 1978 .

[3]  J. Pople,et al.  Correlation energies for AH n molecules and cations , 1975 .

[4]  I. Csizmadia,et al.  An ab initio study of the AAc1 hydrolysis mechanism of formamide , 1973 .

[5]  B. Ault,et al.  Infrared spectra of the ammonia-hydrochloric acid complex in solid nitrogen , 1973 .

[6]  J. Corset,et al.  Etude par spectroscopie infrarouge des solutions concentrées de sels d'ammonium dans l'ammoniac liquide et de l'ammoniacate solide ClNH4, 3NH3 , 1968 .

[7]  Russell M. Pitzer,et al.  Near Hartree‐Fock Calculations on the Ground State of the Water Molecule: Energies, Ionization Potentials, Geometry, Force Constants, and One‐Electron Properties , 1972 .

[8]  Bernard R. Brooks,et al.  The Loop-Driven Graphical Unitary Group Approach: A Powerful Method for the Variational Description of Electron Correlation , 1980 .

[9]  W. Richards,et al.  Definition of ‘charge on an atom’ and nature of the inductive effect , 1975, Nature.

[10]  M. Robb,et al.  Localized Intrapair Correlation in NH4+, NH3, NH2−, NH2−, and N3−. A Comparison of SEP Geminals, Interacting Geminals, and IEP Geminals , 1971 .

[11]  D. Clark,et al.  Ab initio calculations of core electron binding energies and shifts in halomethanes , 1973 .

[12]  L. Curtiss,et al.  Molecular orbital theory of the electronic structure of organic compounds. X. Systematic study of geometries and energies of AHn molecules and cations , 1971 .

[13]  Bernard Pullman,et al.  The World of Quantum Chemistry , 1974 .

[14]  E. Clementi Study of the Electronic Structure of Molecules. II. Wavefunctions for the NH3+HCl→NH4Cl Reaction , 1967 .

[15]  G. Diercksen,et al.  Identification of interstellar X-ogen as HCO + . , 1976 .

[16]  M. Robb,et al.  Theoretical definition of the size of electron pairs and its stereochemical implications , 1973 .

[17]  I. Csizmadia,et al.  Theory of lone pairs. II. A moment analysis of localized molecular orbitals in ten-electron hydrides , 1977 .

[18]  K. B. Harvey,et al.  Force Fields for Crystalline BH4− and NH4+ Ions , 1971 .

[19]  I. Csizmadia,et al.  A relationship between the sizes and energies of localized molecular orbitals. I. A study of selected first‐row hydrides , 1977 .

[20]  N. Schumaker,et al.  Infrared Investigation of Structural and Ordering Changes in Ammonium Chloride and Bromide , 1970 .

[21]  H. Schaefer,et al.  Reaction of acetylene with fulminic acid. The prototype 1,3-dipolar cycloaddition , 1980 .

[22]  R. Raffenetti,et al.  Gaseous NH4Cl revisited: A computational investigation of the potential surface and properties , 1979 .

[23]  Bernard R. Brooks,et al.  Analytic gradients from correlated wave functions via the two‐particle density matrix and the unitary group approach , 1980 .

[24]  I. Csizmadia,et al.  Theory of lone pairs. A relationship between orbital energy contributions and the second moments of localized orbitals in ten-electron hydrides , 1976 .

[25]  J. Pople Molecular orbital studies of the energies and structure of polyatomic cations , 1976 .

[26]  W. C. Ermler,et al.  Ab initio SCF and CI studies on the ground state of the water molecule. II. Potential energy and property surfaces , 1976 .

[27]  M. Krauss Calculation of the Geometrical Structure of Some AH n Molecules. , 1964, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[28]  J. Ibers,et al.  Motional Corrections to Distances Derived from NMR Data: NH4Cl, NH4F, and N2H6F2 , 1958 .

[29]  H. Poulet,et al.  Les frequences fondamentales de vibration de l'ion NH4+ , 1960 .

[30]  J. C. Decius,et al.  The Raman spectrum of the ordered phase of NH4Cl and ND4Cl: Dipole and polarizability derivatives , 1977 .

[31]  P. Pulay,et al.  Cubic force constants and equilibrium geometry of methane from Hartree–Fock and correlated wavefunctions , 1978 .

[32]  A. Pullman,et al.  On the origin of the reverse order of intrinsic affinities towards H+ and Li+ in the series NH3 to N(CH3)3 , 1975 .

[33]  M. Robb,et al.  The generalized separated electron pair model. II. An application to NH 4+, NH3, NH 2−, NH2− and N3− , 1971 .

[34]  P. Pulay,et al.  INVESTIGATION OF THE BASIS OF THE VALENCE SHELL ELECTRON PAIR REPULSION MODEL BY AB INITIO CALCULATION OF GEOMETRY VARIATIONS IN A SERIES OF TETRAHEDRAL AND RELATED MOLECULES. , 1979 .

[35]  John P. McTague,et al.  Molecular Vibrations in Crystals , 1978 .

[36]  R. Rouse The physical nature of the lone pair , 1976 .

[37]  R. Taft,et al.  Gas phase basicities and relative proton affinities of compounds between water and ammonia from pulsed ion cyclotron resonance thermal equilibriums measurements , 1977 .

[38]  A. Veillard,et al.  An ab initio LCAO-MO-SCF study of reaction paths for proton transfer in ammonium aqueous solution , 1975 .

[39]  S. Ceyer,et al.  Energetics of gas phase proton solvation by NH3 , 1979 .

[40]  J. B. Collins,et al.  Molecular orbital study of tetrahedral, planar, and pyramidal structures of the isoelectronic series BH4-, CH4, NH4+, AlH4-, SiH4, and PH4+ , 1980 .

[41]  D. L. Gray,et al.  The anharmonic force field and equilibrium structure of methane , 1979 .

[42]  K. B. Harvey,et al.  LOW TEMPERATURE INFRARED AND RAMAN SPECTRA OF THE AMMONIUM HALIDES. , 1971 .

[43]  Wilfried Meyer,et al.  PNO–CI Studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane , 1973 .

[44]  G. Karlström,et al.  Sternheimer shielding in molecules , 1977 .

[45]  G. Verhaegen,et al.  Stability of the Gaseous Ammonium Chloride Molecule , 1969 .

[46]  A. Carrington Review Lecture. Spectroscopy of molecular ion beams , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[47]  H. Schwarz Gas phase infrared spectra of ammoniated ammonium ions , 1980 .

[48]  A. A. Frost A Floating spherical Gaussian orbital model of molecular structure. III. First-row atom hydrides , 1968 .

[49]  P. C. Hariharan,et al.  Accuracy of AH n equilibrium geometries by single determinant molecular orbital theory , 1974 .

[50]  J. Pople,et al.  Derivative studies in configuration–interaction theory , 1980 .