Planar Hall effect in topological Weyl and nodal line semimetals

Using symmetry analysis and semiclassical Boltzmann equation, we theoretically explore the planar Hall effect (PHE) in three-dimensional materials. We demonstrate that PHE is a general phenomenon that can occur in various systems regardless of band topology. Both the Lorentz force and Berry curvature effects can induce significant PHE, and the leading contributions of both effects linearly depend on the electric and magnetic fields. The Lorentz force and Berry curvature PHE coefficient possess only antisymmetric and symmetric parts, respectively. Both contributions respect the same crystalline symmetry constraints but differ under time-reversal symmetry. Remarkably, for topological Weyl semimetal, the Berry curvature PHE coefficient is a constant that does not depends on the Fermi energy, while the Lorentz force contribution linearly increases with the Fermi energy, resulting from the linear dispersion of the Weyl point. Furthermore, we find that the PHE in topological nodal line semimetals is mainly induced by the Lorentz force, as the Berry curvature in these systems vanishes near the nodal line. Our study not only highlights the significance of the Lorentz force in PHE, but also reveals its unique characteristics, which will be beneficial for determining the Lorentz force contribution experimentally.

[1]  Sonika,et al.  Planar Hall effect, Anisotropic magnetoresistance and thermal transport studies of Ag doped PdTe$_2$ , 2023, 2303.18075.

[2]  Zhen-Gang Zhu,et al.  Field-induced Berry connection and planar Hall effect in tilted Weyl semimetals , 2023, 2303.03579.

[3]  H. Weng,et al.  Spatial symmetry modulation of planar Hall effect in Weyl semimetals , 2023, Physical Review B.

[4]  J. Zhuang,et al.  Recent Progress on the Planar Hall effect in Quantum Materials , 2023, Chinese Physics B.

[5]  Yugui Yao,et al.  Landau level spectrum and magneto-optical conductivity in tilted Weyl semimetal , 2022, Physical Review B.

[6]  F. Zhou,et al.  Hourglass charge-three Weyl phonons , 2022, Physical Review B.

[7]  Shengyuan A. Yang,et al.  Third-order charge transport in a magnetic topological semimetal , 2022, Physical Review B.

[8]  Long Xiang,et al.  Intrinsic planar Hall effect in magnetic Weyl semimetals , 2022, 2209.03527.

[9]  Yeliang Wang,et al.  Heterodimensional superlattice with in-plane anomalous Hall effect , 2022, Nature.

[10]  Hong Wang,et al.  Intrinsic Nonlinear Planar Hall Effect. , 2022, Physical review letters.

[11]  F. Zhou,et al.  Single pair of multi-Weyl points in nonmagnetic crystals , 2022, Physical Review B.

[12]  Ipsita Mandal,et al.  Magneto-transport signatures in periodically-driven Weyl and multi-Weyl semimetals , 2022, Physica E: Low-dimensional Systems and Nanostructures.

[13]  H. Min,et al.  Semiclassical magnetotransport including effects of Berry curvature and Lorentz force , 2022, Physical Review B.

[14]  Yugui Yao,et al.  Low-Frequency Divergence of Circular Photomagnetic Effect in Topological Semimetals , 2022, 2201.06243.

[15]  Y. Fuseya,et al.  Negative magnetoresistance and sign change of the planar Hall effect due to negative off-diagonal effective mass in Weyl semimetals , 2021, Physical Review B.

[16]  Yugui Yao,et al.  Band tilt induced nonlinear Nernst effect in topological insulators: An efficient generation of high-performance spin polarization , 2021, Physical Review B.

[17]  Sonika,et al.  Planar Hall effect in Cu intercalated PdTe2 , 2021, Applied Physics Letters.

[18]  M. Wang,et al.  Higher-order oscillatory planar Hall effect in topological kagome metal , 2021, npj Quantum Materials.

[19]  Yugui Yao,et al.  Weyl Monoloop Semi-Half-Metal and Tunable Anomalous Hall Effect. , 2021, Nano letters.

[20]  Jianzhou Zhao,et al.  Intrinsic Second-Order Anomalous Hall Effect and Its Application in Compensated Antiferromagnets , 2021, Physical Review Letters.

[21]  D. Culcer,et al.  Generating a Topological Anomalous Hall Effect in a Nonmagnetic Conductor: An In-Plane Magnetic Field as a Direct Probe of the Berry Curvature. , 2021, Physical review letters.

[22]  Jianzhou Zhao,et al.  Berry connection polarizability tensor and third-order Hall effect , 2021, Physical Review B.

[23]  Kai Liu,et al.  Large anomalous Hall effect induced by gapped nodal lines in GdZn and GdCd , 2021, 2106.12404.

[24]  H. Ding,et al.  Experimental perspective on three-dimensional topological semimetals , 2021 .

[25]  Yugui Yao,et al.  Encyclopedia of emergent particles in three-dimensional crystals. , 2021, Science bulletin.

[26]  H. Zeng,et al.  Temperature Dependent In-Plane Anisotropic Magnetoresistance in HfTe5 Thin Layers , 2021, Chinese Physics Letters.

[27]  G. Guo,et al.  Low-Frequency Divergence and Quantum Geometry of the Bulk Photovoltaic Effect in Topological Semimetals , 2020, 2006.06709.

[28]  Shengyuan A. Yang,et al.  Quantized Circulation of Anomalous Shift in Interface Reflection. , 2020, Physical review letters.

[29]  Zhengyou Liu,et al.  Experimental demonstration of acoustic semimetal with topologically charged nodal surface , 2020, Science Advances.

[30]  M. Deng,et al.  Origin of planar Hall effect on the surface of topological insulators: Tilt of Dirac cone by an in-plane magnetic field , 2020 .

[31]  D. Cory,et al.  Anisotropic planar Hall effect in the type-II topological Weyl semimetal WTe2 , 2019 .

[32]  V. Zyuzin In-plane Hall effect in two-dimensional helical electron systems , 2019, 1910.09511.

[33]  G. Vignale,et al.  Nonlinear Planar Hall Effect. , 2019, Physical review letters.

[34]  Jiaqiang Yan,et al.  Unconventional Hall effect induced by Berry curvature , 2019, National science review.

[35]  Shengyuan A. Yang,et al.  Circumventing the no-go theorem: A single Weyl point without surface Fermi arcs , 2019, Physical Review B.

[36]  X. Xie,et al.  Planar Hall effect in tilted Weyl semimetals , 2019, Physical Review B.

[37]  Baigeng Wang,et al.  Nontopological origin of the planar Hall effect in the type-II Dirac semimetal NiTe2 , 2019, Physical Review B.

[38]  M. Imran,et al.  Berry curvature force and Lorentz force comparison in the magnetotransport of Weyl semimetals , 2018, Physical Review B.

[39]  Huan Wang,et al.  Planar Hall effect in the Dirac semimetal PdTe2 , 2018, 1811.06767.

[40]  B. Satpati,et al.  Planar Hall effect in the type-II Dirac semimetal VAl3 , 2018, Physical Review B.

[41]  Yugui Yao,et al.  Almost ideal nodal-loop semimetal in monoclinic CuTeO3 material , 2018, Physical Review B.

[42]  R. Cava,et al.  Experimental Tests of the Chiral Anomaly Magnetoresistance in the Dirac-Weyl Semimetals Na3Bi and GdPtBi , 2018, Physical Review X.

[43]  Yunhao Lu,et al.  Hybrid nodal loop metal: Unconventional magnetoresponse and material realization , 2018, 1802.00905.

[44]  Y. Wang,et al.  Planar Hall effect in type-II Weyl semimetal WTe2 , 2018, 1801.05929.

[45]  Shengyuan A. Yang,et al.  Nodal surface semimetals: Theory and material realization , 2017, 1712.09773.

[46]  Daniel S. Sanchez,et al.  Unconventional Chiral Fermions and Large Topological Fermi Arcs in RhSi. , 2017, Physical review letters.

[47]  C. Felser,et al.  Planar Hall effect in the Weyl semimetal GdPtBi , 2017, Physical Review B.

[48]  Wenshuai Gao,et al.  Probing the chiral anomaly by planar Hall effect in Dirac semimetal Cd3As2 nanoplates , 2017, Physical Review B.

[49]  S. Tewari,et al.  Berry phase theory of planar Hall effect in topological insulators , 2017, Scientific Reports.

[50]  S. Tewari,et al.  Chiral Anomaly as the Origin of the Planar Hall Effect in Weyl Semimetals. , 2017, Physical review letters.

[51]  Z. Du,et al.  Negative Magnetoresistance without Chiral Anomaly in Topological Insulators. , 2017, Physical review letters.

[52]  Yugui Yao,et al.  Type-II nodal loops: Theory and material realization , 2017, 1705.02076.

[53]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[54]  K. Klitzing Quantum Hall Effect: Discovery and Application , 2017 .

[55]  Kazuhiko Matsumoto,et al.  Planar Hall effect from the surface of topological insulators , 2017, Nature Communications.

[56]  Q. Gibson,et al.  Anomalous Hall effect in ZrTe5 , 2016, 1612.06972.

[57]  X. Dai,et al.  Topological nodal line semimetals , 2016, 1609.05414.

[58]  Quansheng Wu,et al.  Triple Point Topological Metals , 2016, 1605.04653.

[59]  X. Dai,et al.  Topological semimetals with triply degenerate nodal points in θ -phase tantalum nitride , 2016, 1604.08467.

[60]  Yugui Yao,et al.  Predicted Unusual Magnetoresponse in Type-II Weyl Semimetals. , 2016, Physical review letters.

[61]  Barry Bradlyn,et al.  Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals , 2016, Science.

[62]  J. Sinova,et al.  Spin Hall effects , 2015 .

[63]  X. Dai,et al.  Topological Node-Line Semimetal and Dirac Semimetal State in Antiperovskite Cu3PdN. , 2015, Physical review letters.

[64]  Y. Kawazoe,et al.  Topological node-line semimetal in three-dimensional graphene networks , 2014, 1411.2175.

[65]  L. Balents,et al.  Topological nodal semimetals , 2011, 1110.1089.

[66]  F. Freimuth,et al.  Origin of the planar Hall effect in nanocrystalline Co60Fe20B20. , 2011, Physical review letters.

[67]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[68]  D. Maslov,et al.  Necessary and sufficient condition for longitudinal magnetoresistance , 2010, 1003.2997.

[69]  J. Sinova,et al.  Anomalous hall effect , 2009, 0904.4154.

[70]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[71]  J. Lenz,et al.  Magnetic sensors and their applications , 2006, IEEE Sensors Journal.

[72]  K. Ploog,et al.  Order-driven contribution to the planar hall effect in Fe3Si thin films , 2005 .

[73]  Shou-Cheng Zhang,et al.  Quantum spin Hall effect. , 2005, Physical review letters.

[74]  Di Xiao,et al.  Berry phase correction to electron density of states in solids. , 2005, Physical review letters.

[75]  M. Roukes,et al.  Giant planar Hall effect in epitaxial (Ga,Mn)as devices. , 2002, Physical review letters.

[76]  S. G. Kim,et al.  Magnetoresistance and planar Hall effects in submicron exchange-coupled NiO/Fe19Ni81 wires , 1999 .

[77]  A. B. Pakhomov,et al.  Anisotropic magnetoresistance and planar Hall effect in magnetic metal-insulator composite films , 1997 .

[78]  Bodo Huckestein,et al.  Scaling theory of the integer quantum Hall effect , 1995, cond-mat/9501106.

[79]  J. Lenz A review of magnetic sensors , 1990, Proc. IEEE.

[80]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[81]  J. M. Daughton,et al.  Gmr Applications , 1999 .