Controlling chaos in dynamic-mode atomic force microscope

We successfully demonstrated the first experimental stabilization of irregular and non-periodic cantilever oscillation in the amplitude modulation atomic force microscopy using the time-delayed feedback control. A perturbation to cantilever excitation force stabilized an unstable periodic orbit associated with nonlinear cantilever dynamics. Instead of the typical piezoelectric excitation, the magnetic excitation was used for directly applying control force to the cantilever. The control force also suppressed the cantilever’s occasional bouncing motions that caused artifacts on a surface image.

[1]  J. E. Stern,et al.  Deposition and imaging of localized charge on insulator surfaces using a force microscope , 1988 .

[2]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[3]  Y. Sugawara,et al.  Atom manipulation and image artifact on Si(111)7×7 surface using a low temperature noncontact atomic force microscope , 2002 .

[4]  Sebastian Rützel,et al.  Nonlinear dynamics of atomic–force–microscope probes driven in Lennard–Jones potentials , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Hemantha K. Wickramasinghe,et al.  Atomic force microscope–force mapping and profiling on a sub 100‐Å scale , 1987 .

[6]  M. Ohta,et al.  Defect Motion on an InP(110) Surface Observed with Noncontact Atomic Force Microscopy , 1995, Science.

[7]  Paul K. Hansma,et al.  Tapping mode atomic force microscopy in liquids , 1994 .

[8]  Jerome Mertz,et al.  Regulation of a microcantilever response by force feedback , 1993 .

[9]  A. Boccara,et al.  Bistable behavior of a vibrating tip near a solid surface , 1991 .

[10]  S. Kitamura,et al.  Observation of 7×7 Reconstructed Structure on the Silicon (111) Surface using Ultrahigh Vacuum Noncontact Atomic Force Microscopy , 1995 .

[11]  Kestutis Pyragas,et al.  Experimental control of chaos by delayed self-controlling feedback , 1993 .

[12]  R. Stark,et al.  Chaos in dynamic atomic force microscopy , 2006, Nanotechnology.

[13]  Ricardo Garcia,et al.  Dynamics of a vibrating tip near or in intermittent contact with a surface , 2000 .

[14]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[15]  J. Molenaar,et al.  Dynamics of vibrating atomic force microscopy , 2000 .

[16]  Yoshisuke Ueda,et al.  The road to chaos , 1992 .

[17]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[18]  Arvind Raman,et al.  Chaos in atomic force microscopy. , 2006, Physical review letters.

[19]  Andrew G. Glen,et al.  APPL , 2001 .

[20]  M. Tsukada,et al.  Dynamics of the cantilever in noncontact atomic force microscopy , 1998 .

[21]  Takashi Hikihara,et al.  An experimental study on stabilization of unstable periodic motion in magneto-elastic chaos , 1996 .

[22]  Jan Greve,et al.  Tapping mode atomic force microscopy in liquid , 1994 .

[23]  Gauthier,et al.  Stabilizing unstable periodic orbits in fast dynamical systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Takashi Hikihara,et al.  Control of microcantilevers in dynamic force microscopy using time delayed feedback , 2006 .

[25]  Javier Tamayo,et al.  Study of the noise of micromechanical oscillators under quality factor enhancement via driving force control , 2005 .

[26]  I Z Kiss,et al.  Stabilization of unstable steady states and periodic orbits in an electrochemical system using delayed-feedback control. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[28]  Stephan Herminghaus,et al.  Capillary forces in tapping mode atomic force microscopy , 2002 .

[29]  Shivprasad Patil,et al.  Small signal amplification using parametric resonance in NcAFM imaging , 2003 .

[30]  S. Lindsay,et al.  A magnetically driven oscillating probe microscope for operation in liquids , 1996 .

[31]  Glorieux,et al.  Controlling unstable periodic orbits by a delayed continuous feedback. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  Krueger,et al.  Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects. , 1996, Physical review. B, Condensed matter.

[33]  Y. Martin,et al.  Magnetic imaging by ‘‘force microscopy’’ with 1000 Å resolution , 1987 .

[34]  M. Dahleh,et al.  Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy , 1999 .

[35]  Kestutis Pyragas,et al.  Delayed feedback control of chaos , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Burnham,et al.  Nanosubharmonics: The dynamics of small nonlinear contacts. , 1995, Physical review letters.

[37]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[38]  F. Giessibl,et al.  Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy , 1995, Science.

[39]  Murti V. Salapaka,et al.  Dynamical analysis and control of microcantilevers , 1999, Autom..

[40]  G. Briggs,et al.  Nonlinear dynamics of intermittent-contact mode atomic force microscopy , 1997 .

[41]  D. Sarid Scanning Force Microscopy: With Applications To Electric, Magnetic, And Atomic Forces , 1991 .