Molecular paneling via coordination

This article deals with a coordination approach to three-dimensional assemblies via ‘molecular paneling’. Families of planar exo-multidentate organic ligands (molecular panels) are found to assemble into large three-dimensional assemblies through metal-coordination. In particular, cis-protected square planar metals, (en)Pd2+ or (en)Pt2+ (en = ethylenediamine), are shown to be very useful to panel the molecules. Metal-assembled cages, bowls, tubes, capsules, and polyhedra are efficiently constructed by this approach.

[1]  P. Stang,et al.  Self-assembly of discrete cyclic nanostructures mediated by transition metals. , 2000, Chemical reviews.

[2]  M. Fujita,et al.  Encapsulation of Large, Neutral Molecules in a Self-Assembled Nanocage Incorporating Six Palladium(II) Ions. , 1998, Angewandte Chemie.

[3]  P. Stang,et al.  Transition Metal Based Cationic Molecular Boxes. Self-Assembly of Macrocyclic Platinum(II) and Palladium(II) Tetranuclear Complexes , 1994 .

[4]  M. Fujita,et al.  Preparation of a macrocyclic polynuclear complex, [(en)Pd(4,4'-bpy)]4(NO3)8 (en = ethylenediamine, bpy = bipyridine), which recognizes an organic molecule in aqueous media , 1990 .

[5]  J. Baldwin,et al.  DESIGN STRATEGIES FOR SOLID-STATE SUPRAMOLECULAR ARRAYS CONTAINING BOTH MIXED-METALATED AND FREEBASE PORPHYRINS , 1999 .

[6]  B. Abrahams,et al.  A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks , 1991 .

[7]  G. Stanley,et al.  Intramolecular coordination of bidentate Lewis bases to a cofacial binuclear copper(II) complex , 1986 .

[8]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[9]  P. Steel,et al.  Self-Assembly and X-ray Structure of a Dimetalloparacyclophane Incorporating a pi-pi Stacked Subunit. , 1996, Inorganic chemistry.

[10]  M. Fujita,et al.  Molecular Paneling via Coordination: Guest-Controlled Assembly of Open Cone and Tetrahedron Structures from Eight Metals and Four Ligands , 2000 .

[11]  M. Fujita,et al.  “Ship-in-a-Bottle” Formation of Stable Hydrophobic Dimers of cis-Azobenzene and -Stilbene Derivatives in a Self-Assembled Coordination Nanocage , 1999 .

[12]  A. Maverick,et al.  Cofacial binuclear copper complexes of a bis(.beta.-diketone) ligand , 1984 .

[13]  J. Rebek,et al.  A Synthetic Cavity Assembles Through Self-Complementary Hydrogen Bonds† , 1993 .

[14]  M. Fujita,et al.  Self-assembly of ten molecules into nanometre-sized organic host frameworks , 1995, Nature.

[15]  M. Fujita,et al.  Hydrophobic Assembling of a Coordination Nanobowl into a Dimeric Capsule Which Can Accommodate up to Six Large Organic Molecules , 2000 .

[16]  R. Warmuth,et al.  1,2,4,6‐Cycloheptatetraene: Room‐Temperature Stabilization inside a Hemicarcerand , 2000 .

[17]  Nobuhiro Takeda,et al.  A nanometre-sized hexahedral coordination capsule assembled from 24 components , 1999, Nature.

[18]  Paul N. W. Baxter,et al.  Multicomponent Self-Assembly: Spontaneous Formation of a Cylindrical Complex from Five Ligands and Six Metal Ions† , 1993 .

[19]  Katsuyuki Ogura,et al.  Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine , 1994 .

[20]  D. Cram Molecular container compounds , 1992, Nature.

[21]  B. Abrahams,et al.  Assembly of porphyrin building blocks into network structures with large channels , 1994, Nature.

[22]  M. Fujita,et al.  A Thermally Switchable Molecular Lock. Guest-Templated Synthesis of a Kinetically Stable Nanosized Cage , 1998 .

[23]  Kenneth N. Raymond,et al.  Supermolecules by Design , 1999 .

[24]  P. Stang,et al.  Self-Assembly, Symmetry, and Molecular Architecture: Coordination as the Motif in the Rational Design of Supramolecular Metallacyclic Polygons and Polyhedra , 1997 .

[25]  M. Fujita,et al.  Macrocylic polynuclear complexes [(en)M(4,4′-bpy)]4(NO3)81 (M = Pd or Pt) as “Inorganic Cyclophane.” Their Ability for Molecular Recognition , 1991 .

[26]  J. Atwood,et al.  A chiral spherical molecular assembly held together by 60 hydrogen bonds , 1997, Nature.

[27]  Jean-Marie Lehn,et al.  Cryptates: inclusion complexes of macropolycyclic receptor molecules , 1978 .

[28]  K. Biradha,et al.  Quantitative Formation of Coordination Nanotubes Templated by Rodlike Guests , 1999 .

[29]  S. Shinkai,et al.  Inclusion of [60]Fullerene in a Homooxacalix[3]arene-Based Dimeric Capsule Cross-Linked by a PdII−Pyridine Interaction , 1999 .

[30]  M. Yoshizawa,et al.  Ship-in-a-Bottle Synthesis of Otherwise Labile Cyclic Trimers of Siloxanes in a Self-Assembled Coordination Cage , 2000 .

[31]  L. Barbour,et al.  Controlling molecular self-organization: formation of nanometer-scale spheres and tubules , 1999, Science.

[32]  M. Fujita,et al.  Self-Assembly of Nanometer-Sized Macrotricyclic Complexes from Ten Small Component Molecules. , 1998, Angewandte Chemie.