Model reduction for real-time fluids

We present a new model reduction approach to fluid simulation, enabling large, real-time, detailed flows with continuous user interaction. Our reduced model can also handle moving obstacles immersed in the flow. We create separate models for the velocity field and for each moving boundary, and show that the coupling forces may be reduced as well. Our results indicate that surprisingly few basis functions are needed to resolve small but visually important features such as spinning vortices.

[1]  J. Lumley Stochastic tools in turbulence , 1970 .

[2]  L. Sirovich Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .

[3]  R. Temam,et al.  Nonlinear Galerkin methods , 1989 .

[4]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[5]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[6]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[7]  J. Marsden,et al.  Reconstruction equations and the Karhunen—Loéve expansion for systems with symmetry , 2000 .

[8]  J. Lumley,et al.  Extended Proper Orthogonal Decomposition: Application to Jet/Vortex Interaction , 2001 .

[9]  Jos Starn A Simple Fluid Solver Based on the FFT , 2001, J. Graphics, GPU, & Game Tools.

[10]  Anselmo Lastra,et al.  Physically-based visual simulation on graphics hardware , 2002, HWWS '02.

[11]  J. Marsden,et al.  Reduction and reconstruction for self-similar dynamical systems , 2002 .

[12]  Greg Humphreys,et al.  A multigrid solver for boundary value problems using programmable graphics hardware , 2003, HWWS '03.

[13]  Doug L. James,et al.  Precomputing interactive dynamic deformable scenes , 2003, ACM Trans. Graph..

[14]  J. Krüger,et al.  Linear algebra operators for GPU implementation of numerical algorithms , 2003, ACM Trans. Graph..

[15]  Arie E. Kaufman,et al.  Implementing lattice Boltzmann computation on graphics hardware , 2003, The Visual Computer.

[16]  Ryan F. Schmit,et al.  Low Dimensional Tools for Flow-Structure Interaction Problems: Application to Micro Air Vehicles , 2003 .

[17]  Daniel C. Haworth,et al.  Application of the proper orthogonal decomposition to datasets of internal combustion engine flows , 2004 .

[18]  G. Karniadakis,et al.  A spectral viscosity method for correcting the long-term behavior of POD models , 2004 .

[19]  Enhua Wu,et al.  An improved study of real‐time fluid simulation on GPU , 2004, Comput. Animat. Virtual Worlds.

[20]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[21]  Sang Il Park,et al.  Vortex fluid for gaseous phenomena , 2005, SCA '05.

[22]  Ronald Fedkiw,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[23]  James F. O'Brien,et al.  Animating gases with hybrid meshes , 2005, ACM Trans. Graph..

[24]  P. Sagaut,et al.  Calibrated reduced-order POD-Galerkin system for fluid flow modelling , 2005 .

[25]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[26]  P. Schröder,et al.  Sparse matrix solvers on the GPU: conjugate gradients and multigrid , 2003, SIGGRAPH Courses.

[27]  N. Ahuja,et al.  Out-of-core tensor approximation of multi-dimensional matrices of visual data , 2005, SIGGRAPH 2005.

[28]  David R. Williams,et al.  Linear models for control of cavity flow oscillations , 2006, Journal of Fluid Mechanics.

[29]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2006, SIGGRAPH Courses.

[30]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2007, TOGS.