H2B ubiquitylation promotes RNA Pol II processivity via PAF1 and pTEFb.

[1]  J. Svejstrup,et al.  Mechanistic Interpretation of Promoter-Proximal Peaks and RNAPII Density Maps , 2013, Cell.

[2]  Michael Y Tolstorukov,et al.  The CLAMP protein links the MSL complex to the X chromosome during Drosophila dosage compensation. , 2013, Genes & development.

[3]  J. Workman,et al.  Chromatin and signaling. , 2013, Current opinion in cell biology.

[4]  P. Park,et al.  Comment on “Drosophila Dosage Compensation Involves Enhanced Pol II Recruitment to Male X-Linked Promoters” , 2013, Science.

[5]  Juan M. Vaquerizas,et al.  Response to Comments on “Drosophila Dosage Compensation Involves Enhanced Pol II Recruitment to Male X-Linked Promoters” , 2013, Science.

[6]  Supat Thongjuea,et al.  In vivo live imaging of RNA polymerase II transcription factories in primary cells. , 2013, Genes & development.

[7]  R. Young,et al.  Transcriptional Regulation and Its Misregulation in Disease , 2013, Cell.

[8]  Brett N. Tomson,et al.  The many roles of the conserved eukaryotic Paf1 complex in regulating transcription, histone modifications, and disease states. , 2013, Biochimica et biophysica acta.

[9]  M. Osley,et al.  A role for H2B ubiquitylation in DNA replication. , 2012, Molecular cell.

[10]  John T. Lis,et al.  Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans , 2012, Nature Reviews Genetics.

[11]  Juan M. Vaquerizas,et al.  Drosophila Dosage Compensation Involves Enhanced Pol II Recruitment to Male X-Linked Promoters , 2012, Science.

[12]  Zhaohui S. Qin,et al.  The histone acetyltransferase MOF is a key regulator of the embryonic stem cell core transcriptional network. , 2012, Cell stem cell.

[13]  Pierre-Étienne Jacques,et al.  A Positive Feedback Loop Links Opposing Functions of P-TEFb/Cdk9 and Histone H2B Ubiquitylation to Regulate Transcript Elongation in Fission Yeast , 2012, PLoS genetics.

[14]  Christopher P. Davis,et al.  Small region of Rtf1 protein can substitute for complete Paf1 complex in facilitating global histone H2B ubiquitylation in yeast , 2012, Proceedings of the National Academy of Sciences.

[15]  S. Johnsen The enigmatic role of H2Bub1 in cancer , 2012, FEBS letters.

[16]  Pierre-Étienne Jacques,et al.  A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. , 2012, Molecular cell.

[17]  Thomas Conrad,et al.  Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription , 2012, Nature Reviews Genetics.

[18]  M. Geyer,et al.  Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition , 2012, Nature Communications.

[19]  B. Garcia,et al.  The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation. , 2011, Molecular cell.

[20]  Christopher P. Davis,et al.  Identification of a Role for Histone H2B Ubiquitylation in Noncoding RNA 3′-End Formation Through Mutational Analysis of Rtf1 in Saccharomyces cerevisiae , 2011, Genetics.

[21]  Xiaochun Yu,et al.  WAC, a functional partner of RNF20/40, regulates histone H2B ubiquitination and gene transcription. , 2011, Molecular cell.

[22]  Leighton J. Core,et al.  X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila , 2010, Nature.

[23]  J. Lis,et al.  CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. , 2010, Genes & development.

[24]  J. Jaehning,et al.  The Paf1 complex: platform or player in RNA polymerase II transcription? , 2010, Biochimica et biophysica acta.

[25]  Christopher B. Burge,et al.  c-Myc Regulates Transcriptional Pause Release , 2010, Cell.

[26]  R. Roeder,et al.  The Human PAF1 Complex Acts in Chromatin Transcription Elongation Both Independently and Cooperatively with SII/TFIIS , 2010, Cell.

[27]  Zhaohui S. Qin,et al.  HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data , 2010, BMC Bioinformatics.

[28]  S. Buratowski Progression through the RNA polymerase II CTD cycle. , 2009, Molecular cell.

[29]  Danny Reinberg,et al.  Histones: annotating chromatin. , 2009, Annual review of genetics.

[30]  S. Johnsen,et al.  Insights into the function of the human P-TEFb component CDK9 in the regulation of chromatin modifications and co-transcriptional mRNA processing , 2009, Cell cycle.

[31]  I. Mansuy,et al.  Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. , 2009, Journal of proteome research.

[32]  Steven Hahn,et al.  Phosphorylation of the Transcription Elongation Factor Spt5 by Yeast Bur1 Kinase Stimulates Recruitment of the PAF Complex , 2009, Molecular and Cellular Biology.

[33]  R. Roeder,et al.  Direct Bre1-Paf1 Complex Interactions and RING Finger-independent Bre1-Rad6 Interactions Mediate Histone H2B Ubiquitylation in Yeast* , 2009, The Journal of Biological Chemistry.

[34]  Herbert Schulz,et al.  A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. , 2009, Cell stem cell.

[35]  A. Shilatifard,et al.  RAD6-Mediated Transcription-Coupled H2B Ubiquitylation Directly Stimulates H3K4 Methylation in Human Cells , 2009, Cell.

[36]  M. Kuroda,et al.  Drosophila dosage compensation: a complex voyage to the X chromosome , 2009, Development.

[37]  Karen Zhou,et al.  Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5 , 2009, Proceedings of the National Academy of Sciences.

[38]  B. Strahl,et al.  Protein modifications in transcription elongation. , 2009, Biochimica et biophysica acta.

[39]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[40]  Bing Li,et al.  The MSL3 chromodomain directs a key targeting step for dosage compensation of the Drosophila X chromosome , 2008, Nature Structural &Molecular Biology.

[41]  R. Roeder,et al.  Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation , 2008, Nature.

[42]  K. Jones,et al.  The multi-tasking P-TEFb complex. , 2008, Current opinion in cell biology.

[43]  Nicholas M. Luscombe,et al.  Genome-wide Analysis Reveals MOF as a Key Regulator of Dosage Compensation and Gene Expression in Drosophila , 2008, Cell.

[44]  J. Jaehning,et al.  Direct Interactions between the Paf1 Complex and a Cleavage and Polyadenylation Factor Are Revealed by Dissociation of Paf1 from RNA Polymerase II , 2008, Eukaryotic Cell.

[45]  John T. Lis,et al.  Transcription Regulation Through Promoter-Proximal Pausing of RNA Polymerase II , 2008, Science.

[46]  Vikki M. Weake,et al.  Histone ubiquitination: triggering gene activity. , 2008, Molecular cell.

[47]  Eran Segal,et al.  Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells , 2008, Nature Cell Biology.

[48]  D. Bentley,et al.  RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes , 2008, Nature Structural &Molecular Biology.

[49]  Dinshaw J. Patel,et al.  Multivalent engagement of chromatin modifications by linked binding modules , 2007, Nature Reviews Molecular Cell Biology.

[50]  Manolis Kellis,et al.  RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo , 2007, Nature Genetics.

[51]  K. Arndt,et al.  Regulation of histone modification and cryptic transcription by the Bur1 and Paf1 complexes , 2007, The EMBO journal.

[52]  J. Lis Imaging Drosophila gene activation and polymerase pausing in vivo , 2007, Nature.

[53]  B. Strahl,et al.  H2B ubiquitylation in transcriptional control: a FACT-finding mission. , 2007, Genes & development.

[54]  Bing Li,et al.  The Role of Chromatin during Transcription , 2007, Cell.

[55]  Kevin Struhl,et al.  The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting. , 2006, Molecular cell.

[56]  H. Phatnani,et al.  Phosphorylation and functions of the RNA polymerase II CTD. , 2006, Genes & development.

[57]  Peter J Park,et al.  High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. , 2006, Genes & development.

[58]  B. van Steensel,et al.  Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. , 2006, Genes & development.

[59]  Mark Johnston,et al.  The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS. , 2005, Molecular cell.

[60]  Paul Tempst,et al.  Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. , 2005, Molecular cell.

[61]  W. G. Kelly,et al.  Chromatin remodeling in dosage compensation. , 2005, Annual review of genetics.

[62]  T. Hughes,et al.  BUR Kinase Selectively Regulates H3 K4 Trimethylation and H2B Ubiquitylation through Recruitment of the PAF Elongation Complex , 2005, Current Biology.

[63]  Thomas A. Milne,et al.  Physical Association and Coordinate Function of the H3 K4 Methyltransferase MLL1 and the H4 K16 Acetyltransferase MOF , 2005, Cell.

[64]  M. Osley H2B ubiquitylation: the end is in sight. , 2004, Biochimica et biophysica acta.

[65]  L. Kèlland,et al.  Flavopiridol, the first cyclin-dependent kinase inhibitor to enter the clinic: current status , 2000, Expert opinion on investigational drugs.