Carbon nanotube electronics and opto-electronics

Carbon nanotubes (CNTs) are one-dimensional nanostructures with unique properties. This article discusses why CNTs provide an ideal basis for a future carbon-based nanoelectronic technology, focusing specifically on single-carbon-nanotube field-effect transistors (CNT-FETs). Results of transport experiments and theoretical modeling will be used to address such issues as the nature of the switching mechanism, the role of the metal contacts, the role of the environment, the FET scaling properties, and the use of these findings to produce high-performance p-type, n-type, and ambipolar CNT-FETs and simple intra-nanotube circuits. CNTs are also direct-gap nanostructures that show promise in the field of optoelectronics. This article briefly reviews their optical behavior and presents results that show that ambipolar CNT-FETs can be used to produce electrically controlled light sources based on radiative electron-hole recombination. The reverse process-that is, the generation of photocurrents by the irradiation of single CNT-FETs-and photoconductivity spectra of individual CNTs are also demonstrated.

[1]  Leonard,et al.  Role of fermi-level pinning in nanotube schottky diodes , 2000, Physical review letters.

[2]  P. McEuen,et al.  Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes , 2003, cond-mat/0309641.

[3]  Phaedon Avouris,et al.  Scaling of excitons in carbon nanotubes. , 2004, Physical review letters.

[4]  J. C. Tsang,et al.  Electrically Induced Optical Emission from a Carbon Nanotube FET , 2003, Science.

[5]  S. Wind,et al.  Lateral scaling in carbon-nanotube field-effect transistors. , 2003, Physical review letters.

[6]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[7]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[8]  P. Avouris,et al.  Scanning tunneling microscope tip–sample interactions: Atomic modification of Si and nanometer Si Schottky diodes , 1993 .

[9]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[10]  Stefan Heinze,et al.  Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors , 2003 .

[11]  Qian Wang,et al.  Ballistic Transport in Metallic Nanotubes with Reliable Pd Ohmic Contacts , 2003 .

[12]  H. Dai,et al.  Quantum interference and ballistic transmission in nanotube electron waveguides. , 2001, Physical review letters.

[13]  C. Quate,et al.  Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes , 1999 .

[14]  Richard Martel,et al.  Controlling doping and carrier injection in carbon nanotube transistors , 2002 .

[15]  J. Lefebvre,et al.  Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes. , 2003, Physical review letters.

[16]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[17]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[18]  S. Wind,et al.  Carbon nanotube electronics , 2003, Digest. International Electron Devices Meeting,.

[19]  Phaedon Avouris,et al.  Optimized contact configuration for the study of transport phenomena in ropes of single-wall carbon nanotubes , 2001 .

[20]  Steven G. Louie,et al.  Disorder, Pseudospins, and Backscattering in Carbon Nanotubes , 1999 .

[21]  P. Avouris,et al.  Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown , 2001, Science.

[22]  C L Kane,et al.  Ratio problem in single carbon nanotube fluorescence spectroscopy. , 2003, Physical review letters.

[23]  Marcus Freitag,et al.  Controlled creation of a carbon nanotube diode by a scanned gate , 2001 .

[24]  C Lavoie,et al.  Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. , 2001, Physical review letters.

[25]  Louis E. Brus,et al.  Controlling Energy-Level Alignments at Carbon Nanotube/Au Contacts , 2003 .

[26]  T. Pedersen Variational approach to excitons in carbon nanotubes , 2003 .

[27]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[28]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[29]  Richard Martel,et al.  Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes , 2002 .

[30]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[31]  D. Frank,et al.  High-frequency response in carbon nanotube field-effect transistors , 2004, IEEE Electron Device Letters.

[32]  T. Ando Excitons in Carbon Nanotubes , 1997 .

[33]  Sumio Iijima,et al.  Elastic Response of Carbon Nanotube Bundles to Visible Light , 1999 .

[34]  Stefan Heinze,et al.  Electrostatic engineering of nanotube transistors for improved performance , 2003 .

[35]  S. Louie,et al.  Excitonic effects and optical spectra of single-walled carbon nanotubes. , 2003, Physical review letters.

[36]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[37]  T. Hertel,et al.  Quantitative analysis of optical spectra from individual single-wall carbon nanotubes , 2003 .

[38]  P. Avouris,et al.  Photoconductivity of Single Carbon Nanotubes , 2003 .

[39]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[40]  P. McEuen,et al.  Single-walled carbon nanotube electronics , 2002 .

[41]  Cohen,et al.  Electronic properties of oxidized carbon nanotubes , 2000, Physical review letters.

[42]  S. Wind,et al.  Field-modulated carrier transport in carbon nanotube transistors. , 2002, Physical review letters.

[43]  P. Avouris,et al.  Carbon Nanotube Inter- and Intramolecular Logic Gates , 2001 .

[44]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[45]  R Martel,et al.  Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.

[46]  Y. Saito,et al.  Exciton Effects of Optical Transitions in Single-Wall Carbon Nanotubes. , 1999 .

[47]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[48]  P. Avouris,et al.  Current saturation and electrical breakdown in multiwalled carbon nanotubes. , 2001, Physical review letters.

[49]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[50]  J. Knoch,et al.  High performance of potassium n-doped carbon nanotube field-effect transistors , 2004, cond-mat/0402350.

[51]  M. Dresselhaus,et al.  Carbon fibers based on C60 and their symmetry. , 1992, Physical review. B, Condensed matter.

[52]  M. Radosavljevic,et al.  Drain voltage scaling in carbon nanotube transistors , 2003, cond-mat/0305570.

[53]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[54]  Phaedon Avouris,et al.  Ambipolar-to-Unipolar Conversion of Carbon Nanotube Transistors by Gate Structure Engineering , 2004 .

[55]  Qian Wang,et al.  Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators , 2002, Nano Letters.

[56]  P L McEuen,et al.  Electrical nanoprobing of semiconducting carbon nanotubes using an atomic force microscope. , 2004, Physical review letters.

[57]  Phaedon Avouris,et al.  Switching behavior of semiconducting carbon nanotubes under an external electric field , 2001 .

[58]  Hiromichi Kataura,et al.  Optical Properties and Raman Spectroscopy of Carbon Nanotubes , 2001 .

[59]  Lang,et al.  Carbon-atom wires: charge-transfer doping, voltage drop, and the effect of distortions , 2000, Physical review letters.

[60]  J. Hafner,et al.  Fabry - Perot interference in a nanotube electron waveguide , 2001, Nature.